مرجع کامل طرح های گرافیکی و پروژه های دانشجویی

مقاله های دانشجویی و دانش آموزی ، پاورپوینت و اسلاید ، تحقیق ، فایلهای گرافیکی( هر آنچه درباره پروژه های و تحقیقات خود می خواهید فقط در قسمت جستجو مطلب مورد نظر خود را وارد کنید )

مرجع کامل طرح های گرافیکی و پروژه های دانشجویی

مقاله های دانشجویی و دانش آموزی ، پاورپوینت و اسلاید ، تحقیق ، فایلهای گرافیکی( هر آنچه درباره پروژه های و تحقیقات خود می خواهید فقط در قسمت جستجو مطلب مورد نظر خود را وارد کنید )

بررسی کاربرد داده کاوی در تجارت الکترونیک

این پژوهش شامل دو بخش می باشدبخش اول در مورد داده کاوی و تکنیکها ومتدلوژی های ان و بخش دوم در مورد تجارت الکترونیک می باشد بخش اول شامل مطالبی در مورد عناصر داده کاوی و سپس کاربردهای داده کاوی در موارد مختلف و تفاوت داده کاوی با پایگاه داده و متدلوژی ها و مراحل داده کاوی وهمچنین وظایف داده کاوی توضیحاتی داده شده است
دسته بندی کامپیوتر و IT
بازدید ها 26
فرمت فایل doc
حجم فایل 501 کیلو بایت
تعداد صفحات فایل 151
بررسی کاربرد داده کاوی در تجارت الکترونیک

فروشنده فایل

کد کاربری 8044
کاربر

فهرست

چکیده................................................................................................................................8

تکنیکهای داده کاوی و متدلوژیهای ان

مقدمه. 9

عناصر داده کاوی.. 15

پردازش تحلیلی پیوسته: 16

قوانین وابستگی: 17

شبکه های عصبی : 17

الگوریتم ژنتیکی: 17

نرم افزار 18

کاربردهای داده کاوی.. 18

داده کاوی و کاربرد آن در کسب و کار هوشمند بانک.... 19

داده کاوی درمدیریت ارتباط بامشتری.. 21

کاربردهای داده کاوی در کتابخانه ها و محیط های دانشگاهی.. 22

مدیریت موسسات دانشگاهی.. 23

داده کاوی آماری و مدیریت بهینه وب سایت ها 25

داده کاوی در مقابل پایگاه داده Data Mining vs database. 26

ابزارهای تجاری داده کاوی.. 27

منابع اطلاعاتی مورد استفاده 28

انبار داده 29

مسائل کسب و کار برای داده‌کاوی.. 31

چرخه تعالی داده کاوی چیست؟ 31

متدلوژی داده‌کاوی و بهترین تمرین‌های آن.. 35

یادگیری چیزهایی که درست نیستند. 36

الگوهایی که ممکن است هیچ قانون اصولی را ارائه نکنند. 36

چیدمان مدل ممکن است بازتاب دهنده جمعیت وابسته نباشد. 38

ممکن است داده در سطح اشتباهی از جزئیات باشد. 38

یادگیری چیزهایی که درست ولی بلااستفاده‌اند. 40

مدل‌ها، پروفایل‌سازی، و پیش‌بینی.. 42

پیش بینی.. 44

متدلوژی.. 45

مرحله 1: تبدیل مسئله کسب و کار به مسئله داده‌کاوی.. 46

مرحله 2: انتخاب داده مناسب... 48

مرحله سوم: پیش به سوی شناخت داده 51

مرحله چهارم: ساختن یک مجموعه مدل.. 52

مرحله پنجم: تثبیت مسئله با داده‌ها 54

مرحله ششم: تبدیل داده برای آوردن اطلاعات به سطح.. 56

مرحله هفتم: ساختن مدلها 59

مرحله هشتم: ارزیابی مدل ها 59

مرحله نهم: استقرار مدل ها 63

مرحله 10: ارزیابی نتایج.. 64

مرحله یازدهم: شروع دوباره 64

وظایف داده‌کاوی‌ 65

1- دسته‌بندی.. 65

2- خوشه‌بندی.. 65

3- تخمین.. 66

4- وابستگی.. 68

5- رگرسیون.. 69

6- پیشگویی.. 70

7- تحلیل توالی.. 70

8- تحلیل انحراف... 71

9- نمایه‌سازی.. 72

تجارت الکترونیک

فصل اول: مقدمه ای بر تجارت الکترونیکی.. 73

1- طبقه‌های مختلف تجارت الکترونیکی.. 75

2- تفاوت تجارت الکترونیکی با تجارت سنتی.. 76

3- نقش دولت در تجارت الکترونیک.... 78

فصل دوم : شکل دهی موقعیت بازار. 80

1- چار چوبی برای تحلیل موقعیت بازار. 80

1-1- پرورش موقعیت : 80

1-2-کشف هسته اصلی موقعیت : 81

1-3- شناسایی مشتریان هدف : 81

1-4- مطالعه توانمندیها و منابع شرکت : 81

1-5- اندازه گیری جذابیت موقیت : 82

2 ) ویژگی های تحلیل موقعیت بازار در اقتصاد جدید: 82

3_ دو نوع ارزش ( value type ) عمده. 84

3_2_ ارزش های جدید ( New-To-The-World value ) : 86

4 – شناسایی نیاز های برآورده شده و برآورده نشده. 88

4-1_ فرآیند تصمیم گیری مشتری... 88

4-2_ آشکارسازی نیازهای برآورده شده و برآورده نشده. 89

5- تعیین مشتریان ویژهای که شرکت قصد متقاعد کردن آنهارا دارد. 91

5-1- روشهایی برای تقسم بندی بازار: 91

5-2- تقسیم بندی قابل اجرا و معنی دار. 92

_ تقسیم بندی قابل اجرا(Actionable Segmentation) 93

_ تقسیم بندی معنی دار. 93

5-3-ترکیب مناسبی از متغیر ها 93

5-4-تناظر بازار و مشتریان هدف... 96

۶- تأمین منابع.. 97

6-1- منابع شرکت : 97

6-2- شرکاﺀ : 98

٧- جذابیت یک موقعیت : 99

7-1- شدت رقابت.... 99

رقبای نزدیک (Adjacent competitors) : 100

بررسی رقبا : (competitor Map) 100

7-2- پویایی های مربوط با مشتریان : 101

7-3- فناوری : 101

7-4- سود دهی مالی : 103

8-ارزیابی نهایی(go/No-go) 104

مدلهای کسب و کار 105

آیا شرکت قادر است در مورد ارزش یا ارزشهای ارائه شده با دیگران رقابت کند؟ 105

چگونه یک شرکت یک سرویس آنلاین را توسعه می دهد؟ 107

یک سیستم منابع مناسب و موفق چگونه است؟ 109

معیارهایی برای ارزیابی کیفیت یک سیستم منبع: 112

مشارکت (Partnership): 113

مدلهای سوددهی برای شرکتهای آنلاین چه هستند؟ 114

2-1- مدلهای مبتنی بر کاربر و شرکت: 115

مدلهای مبتنی بر خلق ارزش توسط شرکت: 117

واسط مشتری.. 121

1- هفت عنصر طراحی برای واسط مشتری.. 121

2- چه چیز تعیین کننده جلوه یک وب سایت است؟ 125

3- محتویات وب سایت... 129

4- تشکل ها در سایت... 132

5- اهرمهای مورد استفاده برای سفارشی کردن یک سایت... 136

6- یک سایت چگونه با مشتریان خود ارتباط بر قرار می کند؟ 139

7- اتصال یک وب سایت با وب سایتهای دیگر. 142

8- اشکال مختلف تجارت در وب سایت... 144

تبادل الکترونیکی داده ها (EDI) 147

1- انواع خرید یک شرکت... 147

2- خرید مواد مستقیم.. 147

3- تبادل الکترونیکی داده ها (EDI) 148

EDI های نسل آینده 150

منابع.......................................................................................................... 151

چکیده:

این پژوهش شامل دو بخش می باشدبخش اول در مورد داده کاوی و تکنیکها ومتدلوژی های ان و بخش دوم در مورد تجارت الکترونیک می باشد.

بخش اول شامل مطالبی در مورد عناصر داده کاوی و سپس کاربردهای داده کاوی در موارد مختلف و تفاوت داده کاوی با پایگاه داده و متدلوژی ها و مراحل داده کاوی وهمچنین وظایف داده کاوی توضیحاتی داده شده است.

بخش دوم در مورد تجارت الکترونیکی که در ان مقدمه ای از تجارت اتکترونیک و شکل دهی موقعیت بازار را بیان نموده است.

مقدمه

از هنگامی که رایانه در تحلیل و ذخیره سازی داده ها بکار رفت (1950) پس از حدود 20 سال، حجم داده ها در پایگاه داده ها دو برابر شد. ولی پس از گذشت دو دهه و همزمان با پیشرفت فن آوری اطلاعات(IT) هر دو سال یکبار حجم داده ها، دو برابر شده و همچنین تعداد پایگاه داده ها با سرعت بیشتری رشد نمود. این در حالی است که تعداد متخصصین تحلیل داده ها با این سرعت رشد نکرد. حتی اگر چنین امری اتفاق می افتاد، بسیاری از پایگاه داده ها چنان گسترش یافته‌اند که شامل چندصد میلیون یا چندصد میلیارد رکورد ثبت شده هستند.امکان تحلیل و استخراج اطلاعات با روش های معمول آماری از دل انبوه داده ها مستلزم چند روز کار با رایانه های موجود است.[3]

حال با وجود سیستم های یکپارچه اطلاعاتی، سیستم های یکپارچه بانکی و تجارت الکترونیک، لحظه به لحظه به حجم داده ها در پایگاه داده های مربوط اضافه شده و باعث به وجود آمدن حانبارهای عظیمی از داده ها شده است.

این واقعیت، ضرورت کشف و استخراج سریع و دقیق دانش از این پایگاه داده ها را بیش از پیش نمایان کرده است، چنان که در عصر حاضر گفته می شود اطلاعات طلاست.

هم اکنون در هر کشور، سازمان، شرکت و غیره برای امور بازرگانی، پرسنلی، آموزشی، آماری و غیره پایگاه داده ها ایجاد یا خریداری شده است. به طوری که این پایگاه داده ها برای مدیران، برنامه ریزان، پژوهشگران جهت، تصمیم گیری های راهبردی، تهیه گزارش های مختلف، توصیف وضعیت جاری خود و سایر اهداف می تواند مفید باشد. بسیاری از این داده ها از نرم افزارهای تجاری، مثل کاربردهای مالی، ERPها، CRMها و web log ها، می آیند. نتیجه این جمع آوری داده ها این می‌شود که در سازمانها، داده ها غنی ولی دانش ضعیف، است. جمع آوری داده ها، بسیار انبوه می‌شود و بسرعت اندازه آن افزایش می یابد و استفاده عملی از داده ها را محدود می سازد.[2]

داده‌کاوی استخراج و تحلیل مقدار زیادی داده بمنظور کشف قوانین و الگوهای معنی دار در آنهاست. هدف اصلی داده کاوی، استخراج الگوهایی از داده ها، افزایش ارزش اصلی آنها و انتقال داده ها بصورت دانش است.

داده‌کاوی، بهمراه OLAP، گزارشگری تشکیلات اقتصادی(Enterprise reporting) و ETL، یک عضو کلیدی در خانواده محصول Business Intelligence(BI)، است.[2Error! Reference source not found.]

حوزه‌های مختلفی وجود دارد که در آنها حجم بسیاری از داده در پایگاه‌داده‌های متمرکز یا توزیع شده ذخیره می‌شود. برخی از آنها به قرار زیر هستند: [6Error! Reference source not found.]

  • کتابخانه دیجیتال: یک مجموعه سازماندهی شده از اطلاعات دیجیتال که بصورت متن در پایگاه‌داده‌های بزرگی ذخیره می شوند.
  • آرشیو تصویر: شامل پایگاه‌داده بزرگی از تصاویر به شکل خام یا فشرده.
  • اطلاعات زیستی: بدن هر انسانی از 50 تا 100 هزار نوع ژن یا پروتئین مختلف ساخته شده است. اطلاعات زیستی شامل تحلیل و تفسیر این حجم عظیم داده ذخیره شده در پایگاه‌داده بزرگی از ژنهاست.
  • تصاویر پزشکی: روزانه حجم وسیعی از داده‌های پزشکی به شکل تصاویر دیجیتال تولید می‌شوند، مانند EKG، MRI، ACT، SCAN و غیره. اینها در پایگاه‌داده‌های بزرگی در سیستم‌های مدیریت پزشکی ذخیره می شوند.
  • مراقبت‌های پزشکی: بجز اطلاعات بالا، یکسری اطلاعات پزشکی دیگری نیز روزانه ذخیره می‌شود مانند سوابق پزشکی بیماران، اطلاعات بیمه درمانی، اطلاعات بیماران خاص و غیره.
  • اطلاعات مالی و سرمایه‌گذاری: این اطلاعات دامنه بزرگی از داده‌ها هستند که برای داده‌کاوی بسیار مطلوب می‌باشند. از این قبیل داده‌ها می‌توان از داده‌های مربوط به سهام، امور بانکی، اطلاعات وام‌ها، کارت‌های اعتباری، اطلاعات کارت‌های ATM، و کشف کلاه‌برداری‌ها می باشد.
  • ساخت و تولید: حجم زیادی از این داده‌ها روزانه به اشکال مختلفی در کارخانه‌ها تولید می‌شود. ذخیره و دسترسی کارا به این داده‌ها و تحلیل آنها برای صنعت تولید بسیار بااهمیت است.
  • کسب و کار و بازاریابی: داده‌ لازم است برای پیش‌بینی فروش، طراحی کسب و کار، رفتار بازرایابی، و غیره.
  • شبکه راه‌دور: انواع مختلفی از داده‌ها در این صنعت تولید و ذخیره می شوند. آنها برای تحلیل الگوهای مکالمات، دنبال کردن تماس‌ها، مدیریت شبکه، کنترل تراکم، کنترل خطا و غیره، استفاده می‌شوند.
  • حوزه علوم: این حوزه شامل مشاهدات نجومی، داده زیستی، داده ژنومیک، و غیره است.
  • WWW: یک حجم وسیع از انواع مختلف داده که در هر جایی از اینترنت پخش شده‌اند.

در بیشتر این حوزه‌ها، تحلیل داده‌ها یک روال دستی بود. یک تحلیلگر کسی بود که با داده‌ها بسیار آشنا بود و با کمک روش‌های آماری، خلاصه‌هایی تهیه و گزارشاتی را تولید می‌کرد. در یک حالت پیشرفته‌تر، از یک پردازنده پیچیده پرسش استفاده می‌شد. اما این روش‌ها با افزایش حجم داده‌ها کاملا بلااستفاده شدند.

واژه های «داده‌کاوی» و «کشف دانش در پایگاه داده»[1] اغلب به صورت مترادف یکدیگر مورد استفاده قرار می گیرند. کشف دانش به عنوان یک فرآیند در شکل1 نشان داده شده است.

کشف دانش در پایگاه داده فرایند شناسایی درست، ساده، مفید، و نهایتا الگوها و مدلهای قابل فهم در داده ها می‌باشد. داده‌کاوی، مرحله‌ای از فرایند کشف دانش می‌باشد و شامل الگوریتمهای مخصوص داده‌کاوی است، بطوریکه، تحت محدودیتهای مؤثر محاسباتی قابل قبول، الگوها و یا مدلها را در داده کشف می کند[3Error! Reference source not found.]. به بیان ساده‌تر، داده‌کاوی به فرایند استخراج دانش ناشناخته، درست، و بالقوه مفید از داده اطلاق می‌شود. تعریف دیگر اینست که، داده‌کاوی گونه‌ای از تکنیکها برای شناسایی اطلاعات و یا دانش تصمیم‌گیری از قطعات داده می‌باشد، به نحوی که با استخراج آنها، در حوزه‌های تصمیم‌گیری، پیش بینی، پیشگویی، و تخمین مورد استفاده قرار گیرند. داده‌ها اغلب حجیم، اما بدون ارزش می‌باشند، داده به تنهایی قابل استفاده نیست، بلکه دانش نهفته در داده ها قابل استفاده می باشد. به این دلیل اغلب به داده کاوی، تحلیل داده ای ثانویه[2] گفته می‌شود.


دانلود فایل پاورپوینت مقدمه ای بر داده کاوی و اکتشاف دانش

پاورپوینت مقدمه ای بر داده کاوی و اکتشاف دانش در 40 اسلاید قابل ویرایش همراه با تصاویر و توضیحات کامل
دسته بندی پاورپوینت
بازدید ها 8
فرمت فایل ppt
حجم فایل 58 کیلو بایت
تعداد صفحات فایل 40
پاورپوینت مقدمه ای بر داده کاوی و اکتشاف دانش

فروشنده فایل

کد کاربری 6017
کاربر

پاورپوینت مقدمه ای بر داده کاوی و اکتشاف دانش در 40 اسلاید قابل ویرایش



مقدمه

nامروزه با گسترش سیستم های پایگاهی و حجم بالای داده ها ی ذخیره شده در این سیستم ها ، نیاز به ابزاری است تا بتوان داده های ذخیره شده پردازش کرد و اطلاعات حاصل از این پردازش را در اختیار کاربران قرار داد .

nبا استفاده ار پرسش های ساده در SQL و ابزارهای گوناگون گزارش گیری معمولی ، می توان اطلاعاتی را در اختیار کاربران قرار داد تا بتوانند به نتیجه گیری در مورد داده ها و روابط منطقی میان آنها بپردازند

nوقتی که حجم داده ها بالا باشد ، کاربران هر چند زبر دست و با تجربه باشند نمی توانند الگوهای مفید را در میان حجم انبوه داده ها تشخیص دهند و یا اگر قادر به این کار هم با شند ، هزینه عملیات از نظر نیروی انسانی و مادی بسیار بالا است

از سوی دیگر کاربران معمولا فرضیه ای را مطرح می کنند و سپس بر اساس گزارشات مشاهده شده به اثبات یا رد فرضیه می پردازند ، در حالی که امروزه نیاز به روشهایی است که اصطلاحا به کشف دانش بپردازند یعنی با کمترین دخالت کاربر و به صورت خودکار الگوها و رابطه های منطقی را بیان نمایند .

nداده کاوی یکی از مهمترین این روشها است که به وسیله آن الگوهای مفید در داده ها با حداقل دخالت کاربران شناخته می شوند و اطلاعاتی را در اختیار کاربران و تحلیل گران قرار می دهند تا براساس آنها تصمیمات مهم و حیاتی در سازمانها اتخاذ شوند .

مفاهیم پایه در داده کاوی

nدر داده کاوی معمولا به کشف الگوهای مفید از میان داده ها اشاره می شود . منظور از الگوی مفید ، مدلی در داده ها است که ارتباط میان یک زیر مجموعه از داده ها را توصیف می کند و معتبر ، ساده ، قابل فهم و جدید است .
ت

عریف داده کاوی

nداده کاوی عبارت است از فرایند استخراج اطلاعات معتبر ، از پیش ناشناخته ، قابل فهم و قابل اعتماد از پایگاه داده های بزرگ و استفاده از آن در تصمیم گیری در فعالیت های تجاری مهم.

nاصطلاح داده کاوی به فرایند نیم خودکار تجزیه و تحلیل پایگاه داده های بزرگ به منظور یافتن الگوهای مفید اطلاق می شود

nداده کاوی یعنی جستجو در یک پایگاه داده ها برای یافتن الگوهایی میان داده ها

مراحل فرایند کشف دانش از پایگاه داده ها

nانبارش داده ها

nانتخاب داده ها

nتبدیل داده ها

nکاوش در داده ها

nتفسیر نتیجه


دانلود فایل مقاله ترجمه شده داده کاوی با روش های مختلف بهینه سازی قابل ویرایش با فرمت doc به همراه اصل مقاله انگلیسی

مقاله ترجمه شده داده کاوی با روش های مختلف بهینه سازی قابل ویرایش با فرمت doc به همراه اصل مقاله انگلیسی
دسته بندی روانشناسی و علوم تربیتی
بازدید ها 33
فرمت فایل doc
حجم فایل 2155 کیلو بایت
تعداد صفحات فایل 20
مقاله ترجمه شده داده کاوی با روش های مختلف بهینه سازی قابل ویرایش با فرمت doc به همراه اصل مقاله انگلیسی

فروشنده فایل

کد کاربری 4558
کاربر

مقاله ترجمه شده داده کاوی با روش های مختلف بهینه سازی قابل ویرایش با فرمت doc به همراه اصل مقاله انگلیسی

چکیده

ترافیک (عبور و مرور) جاده‏ای به عنوان منبع اصلی سر و صدای محیط‏های شهری شناخته شده و به اثبات رسیده است که این سر و صدا به طور قابل توجهی بر سلامت جسمی و روانی انسان و بهره وری نیروی کار تأثیر می گذارد. پس، بسیار مهم است برای کنترل سطح صوتی این سر و صدا در محیطهای شهری به توسعۀ روشهای مدلسازی سر و صدای ترافیک جاده‏ای بپردازیم.همانطور که در ادبیات موضوع مشاهده می شود، روشهایی که با این موضوع سر و کار دارند عموماً بر اساس تحلیل رگرسیون پایه گذاری شده‏اند و دیگر رویکردها کمتر به‏کار برده شده‏اند. در این مقاله روشی جدید ارائه شده که بر اساس بهینه‏سازی استوار است. در شبیه سازی این کار از چهار تکنیک استفاده شده است؛ الگوریتم ژنتیک، الگوریتم هوکی و جیوز، بازپخت و تبرید شبیه سازی شده و بهینه سازی اجتماعات. دو سناریوی متفاوت در این مقاله ارائه شده است. در سناریوی اولِ روشهای بهینه سازی، برای پیدا کردن مناسبترین پارامترها از کل مجموعه داده‏های اندازه گیری شده استفاده می شود، در حالی که در سناریوی دوم، فقط بابعضی از داده‏های اندازه گیریپارامترهای بهینه شده پیدا شدند در حالی که از مابقی داده ها برای ارزیابی قابلیت های پیش بینی مدل استفاده شد. برازش مدل با استفاده از ضریب تعیین و دیگر پارامترهای آماری ارزیابی شد و نتایج در هر دو سناریو نتایج نشان دهندۀ توافق بالای بین داده‏های اندازه‎گیری شده و ارزشهای محاسبه شده هستند. همچنین، این مدل را با مدلهای آماری کلاسیک هم مقایسه کردیم و قابلیتهای برتر مدل پیشنهادی ما نشان داده شد. شبیه‏سازی نیز با استفاده از بسته ای از نرم افزارهای موثق و کاربر پسند انجام شد.

کلمات کلیدی: سروصدای ترافیک، هوش مصنوعی، الگوریتم ژنتیک، هوکی و جیوز، بازپخت و تبرید شبیه سازی شده، بهینه سازی اجتماع ذرات، نرم افزار


دانلود فایل داده کاوی: مفاهیم، روشها، کاربردها، آینده

امروزه با گسترش سیستم های پایگاهی و حجم بالای داده ها ی ذخیره شده در این سیستم ها، نیاز به ابزاری است تا بتوان داده های ذخیره شده پردازش کرد و اطلاعات حاصل از این پردازش را در اختیار کاربران قرار داد
دسته بندی کامپیوتر و IT
بازدید ها 43
فرمت فایل doc
حجم فایل 146 کیلو بایت
تعداد صفحات فایل 24
داده کاوی: مفاهیم، روشها، کاربردها، آینده

فروشنده فایل

کد کاربری 1024
کاربر
  • داده کاوی: مفاهیم، روشها، کاربردها، آینده
  • مقدمه

معرفی دادهکاوی و دلایل پیدایش آن

تعاریف داده کاوی

جایگاه دادهکاوی در علوم کامپیوتر

  • · طبقه بندی روش های داده کاوی

1. داده کاوی توصیفی یا توصیف کننده

2. داده کاوی پیشگویانه

  • · مراحل و اجزای یک فرآیند دادهکاوی

1. بیان مسئله و فرموله کردن فرضیه

2. انتخاب و جمع آوری داده ها

3. تبدیل و پیش پردازش داده ها

4. برآورد مدل یا کاوش در داده ها

5. تفسیر نتیجه یا تفسیر مدل و رسیدن به نتایج

  • · آماده سازی داده ها

1. مدل استاندارد داده ها

2. دو وظیفه اصلی در آماده سازی داده ها

  • · تبدیل و تغییر وضعیت داده های خام

1. نرمال سازی

1-1 مقیاس دهی اعشاری

2-1 نرمال سازی حداقل-حداکثر

3-1 نرمال سازی انحراف معیار

2. یکنواخت سازی داده ها

3. تفاضل ها و نسبت ها

  • · مفهوم داده های از دست رفته و راه حل جبران داده های از دست رفته
  • · مفهوم و روش های تشخیص داده های نامنطبق

1. روش های آماری 2. تشخیص داده های نامنطیق برمبنای فاصله 3. روش ها و تکنیک های برمبنای انحراف

  • · کاهش داده ها

  1. 1. اعمال اصلی در فرایند کاهش داده ها
  2. 2. یافته های حاصل از کاهش داده ها

2-1 کاهش زمان محاسبه.

2-2 افزایش یادگیری در دقت پیشگویانه/توصیفی.

2-3 سادگی در ارائه مدل داده کاوی.

  • · روش های نمونه گیری برای نمونه های بزرگ

1. نمونه گیری سیستمی.

2. نمونه گیری تصادفی.

3. نمونه گیری لایه ای.

4. نمونه گیری معکوس.

مقدمه

امروزه با گسترش سیستم های پایگاهی و حجم بالای داده ها ی ذخیره شده در این سیستم ها، نیاز به ابزاری است تا بتوان داده های ذخیره شده پردازش کرد و اطلاعات حاصل از این پردازش را در اختیار کاربران قرار داد.

با استفاده ار پرسش های ساده درSQL و ابزارهای گوناگون گزارش گیری معمولی، می توان اطلاعاتی را در اختیار کاربران قرار داد تا بتوانند به نتیجه گیری در مورد داده ها و روابط منطقی میان آنها بپردازند اما وقتی که حجم داده ها بالا باشد، کاربران هر چقدرحرفه ای و با تجربه باشند نمی توانند الگوهای مفید را در میان حجم انبوه داده ها تشخیص دهند و یا اگر قادر به این کار هم با شند، هزینه عملیات از نظر نیروی انسانی و مالی بسیار بالا است.


بنابراین میشود گفت که درحال حاضر یک تغییر الگو از مدل سازی و تحلیل های کلاسیک برپایه اصول اولیه به مدل های درحال پیشرفت و تحلیل های مربوط بطور مستقیم از داده ها وجود دارد.

داده کاوی یکی از مهمترین این روشها است که به وسیله آن الگوهای مفید در داده ها با حداقل دخالت کاربران شناخته می شوند و اطلاعاتی را در اختیار کاربران و تحلیل گران قرار می دهند تا براساس آنها تصمیمات مهم و حیاتی در سازمانها اتخاذ شوند.



تعاریف داده کاوی

در متون آکادمیک تعاریف گوناگونی برای داده کاوی ارائه شده اند. در برخی از این تعاریف داده کاوی در حد ابزاری که کاربران را قادر به ارتباط مستقیم با حجم عظیم داده ها می سازد معرفی گردیده است و در برخی دیگر، تعاریف دقیقتر که درآنها به کاوش در داده ها توجه می شود موجود است.

برخی از این تعاریف عبارتند از :

  1. داده کاوی عبارت است از فرایند استخراج اطلاعات معتبر، از پیش ناشناخته، قابل فهم و قابل اعتماد از پایگاه داده های بزرگ و استفاده از آن در تصمیم گیری در فعالیت های تجاری مهم.
  2. فرایند نیم خودکار تجزیه و تحلیل پایگاه داده های بزرگ به منظور یافتن الگوهای مفید اطلاق می شود.
  3. داده کاوی یعنی فرایند جستجو در یک پایگاه داده ها برای یافتن الگوهایی میان داده ها.
  4. داده کاوی یعنی تجزیه و تحلیل مجموعه داده های قابل مشاهده برای یافتن روابط مطمئن بین داده ها.
  5. داده کاوی یعنی استخراج دانش کلان ، قابل استناد و جدید از پایگاه داده ها ی بزرگ.


نکته: همانگونه که در تعاریف گوناگون داده کاوی مشاهده می شود، تقریبا در تمامی تعاریف به مفاهیمی چون استخراج دانش ، تحلیل و یافتن الگوی بین داده ها اشاره شده است.


" داده کاوی فرآیندی است که طی آن با استفاده از ابزار های تحلیل داده به دنبال کشف الگوها و ارتباطات میان داده های موجود که ممکن است منجر به استخراج اطلاعات جدیدی از پایگاه داده گردند، می باشد."



در داده کاوی از بخشی از به نام تحلیل اکتشافی داده ها استفاده می شود که در آن بر کشف اطلاعات نهفته و ناشناخته از درون حجم انبوه داده ها تاکید می شودبنابراین می توان گفت در داده کاوی تئوریهای پایگاه داده ها، هوش مصنوعی، یادگیری ماشین وعلم آمار را در هم می آمیزند تا زمینه کاربردی فراهم شود.

باید توجه داشت که اصطلاح داده کاوی زمانی به کار برده می شود که با حجم بزرگی از داده ها در حد گیگابایت یا ترابایت، مواجه باشیم که از این نظر یکی از بزرگترین بازارهای هدف، انبارجامع داده ها، مراکز داده وسیستم های پشتیبانی تصمیم برای بدست آوردن تخصص هایی در صنایعی مثل شبکه های توزیع مویرگی، تولیدف مخابرات، بیمه و... می باشد.


دانلود فایل بررسی کاربرد داده کاوی در تجارت الکترونیک

این پژوهش شامل دو بخش می باشدبخش اول در مورد داده کاوی و تکنیکها ومتدلوژی های ان و بخش دوم در مورد تجارت الکترونیک می باشد بخش اول شامل مطالبی در مورد عناصر داده کاوی و سپس کاربردهای داده کاوی در موارد مختلف و تفاوت داده کاوی با پایگاه داده و متدلوژی ها و مراحل داده کاوی وهمچنین وظایف داده کاوی توضیحاتی داده شده است
دسته بندی کامپیوتر و IT
فرمت فایل doc
حجم فایل 501 کیلو بایت
تعداد صفحات فایل 151
بررسی کاربرد داده کاوی در تجارت الکترونیک

فروشنده فایل

کد کاربری 8044

فهرست

چکیده................................................................................................................................8

تکنیکهای داده کاوی و متدلوژیهای ان

مقدمه. 9

عناصر داده کاوی.. 15

پردازش تحلیلی پیوسته: 16

قوانین وابستگی: 17

شبکه های عصبی : 17

الگوریتم ژنتیکی: 17

نرم افزار 18

کاربردهای داده کاوی.. 18

داده کاوی و کاربرد آن در کسب و کار هوشمند بانک.... 19

داده کاوی درمدیریت ارتباط بامشتری.. 21

کاربردهای داده کاوی در کتابخانه ها و محیط های دانشگاهی.. 22

مدیریت موسسات دانشگاهی.. 23

داده کاوی آماری و مدیریت بهینه وب سایت ها 25

داده کاوی در مقابل پایگاه داده Data Mining vs database. 26

ابزارهای تجاری داده کاوی.. 27

منابع اطلاعاتی مورد استفاده 28

انبار داده 29

مسائل کسب و کار برای داده‌کاوی.. 31

چرخه تعالی داده کاوی چیست؟ 31

متدلوژی داده‌کاوی و بهترین تمرین‌های آن.. 35

یادگیری چیزهایی که درست نیستند. 36

الگوهایی که ممکن است هیچ قانون اصولی را ارائه نکنند. 36

چیدمان مدل ممکن است بازتاب دهنده جمعیت وابسته نباشد. 38

ممکن است داده در سطح اشتباهی از جزئیات باشد. 38

یادگیری چیزهایی که درست ولی بلااستفاده‌اند. 40

مدل‌ها، پروفایل‌سازی، و پیش‌بینی.. 42

پیش بینی.. 44

متدلوژی.. 45

مرحله 1: تبدیل مسئله کسب و کار به مسئله داده‌کاوی.. 46

مرحله 2: انتخاب داده مناسب... 48

مرحله سوم: پیش به سوی شناخت داده 51

مرحله چهارم: ساختن یک مجموعه مدل.. 52

مرحله پنجم: تثبیت مسئله با داده‌ها 54

مرحله ششم: تبدیل داده برای آوردن اطلاعات به سطح.. 56

مرحله هفتم: ساختن مدلها 59

مرحله هشتم: ارزیابی مدل ها 59

مرحله نهم: استقرار مدل ها 63

مرحله 10: ارزیابی نتایج.. 64

مرحله یازدهم: شروع دوباره 64

وظایف داده‌کاوی‌ 65

1- دسته‌بندی.. 65

2- خوشه‌بندی.. 65

3- تخمین.. 66

4- وابستگی.. 68

5- رگرسیون.. 69

6- پیشگویی.. 70

7- تحلیل توالی.. 70

8- تحلیل انحراف... 71

9- نمایه‌سازی.. 72

تجارت الکترونیک

فصل اول: مقدمه ای بر تجارت الکترونیکی.. 73

1- طبقه‌های مختلف تجارت الکترونیکی.. 75

2- تفاوت تجارت الکترونیکی با تجارت سنتی.. 76

3- نقش دولت در تجارت الکترونیک.... 78

فصل دوم : شکل دهی موقعیت بازار. 80

1- چار چوبی برای تحلیل موقعیت بازار. 80

1-1- پرورش موقعیت : 80

1-2-کشف هسته اصلی موقعیت : 81

1-3- شناسایی مشتریان هدف : 81

1-4- مطالعه توانمندیها و منابع شرکت : 81

1-5- اندازه گیری جذابیت موقیت : 82

2 ) ویژگی های تحلیل موقعیت بازار در اقتصاد جدید: 82

3_ دو نوع ارزش ( value type ) عمده. 84

3_2_ ارزش های جدید ( New-To-The-World value ) : 86

4 – شناسایی نیاز های برآورده شده و برآورده نشده. 88

4-1_ فرآیند تصمیم گیری مشتری... 88

4-2_ آشکارسازی نیازهای برآورده شده و برآورده نشده. 89

5- تعیین مشتریان ویژهای که شرکت قصد متقاعد کردن آنهارا دارد. 91

5-1- روشهایی برای تقسم بندی بازار: 91

5-2- تقسیم بندی قابل اجرا و معنی دار. 92

_ تقسیم بندی قابل اجرا(Actionable Segmentation) 93

_ تقسیم بندی معنی دار. 93

5-3-ترکیب مناسبی از متغیر ها 93

5-4-تناظر بازار و مشتریان هدف... 96

۶- تأمین منابع.. 97

6-1- منابع شرکت : 97

6-2- شرکاﺀ : 98

٧- جذابیت یک موقعیت : 99

7-1- شدت رقابت.... 99

رقبای نزدیک (Adjacent competitors) : 100

بررسی رقبا : (competitor Map) 100

7-2- پویایی های مربوط با مشتریان : 101

7-3- فناوری : 101

7-4- سود دهی مالی : 103

8-ارزیابی نهایی(go/No-go) 104

مدلهای کسب و کار 105

آیا شرکت قادر است در مورد ارزش یا ارزشهای ارائه شده با دیگران رقابت کند؟ 105

چگونه یک شرکت یک سرویس آنلاین را توسعه می دهد؟ 107

یک سیستم منابع مناسب و موفق چگونه است؟ 109

معیارهایی برای ارزیابی کیفیت یک سیستم منبع: 112

مشارکت (Partnership): 113

مدلهای سوددهی برای شرکتهای آنلاین چه هستند؟ 114

2-1- مدلهای مبتنی بر کاربر و شرکت: 115

مدلهای مبتنی بر خلق ارزش توسط شرکت: 117

واسط مشتری.. 121

1- هفت عنصر طراحی برای واسط مشتری.. 121

2- چه چیز تعیین کننده جلوه یک وب سایت است؟ 125

3- محتویات وب سایت... 129

4- تشکل ها در سایت... 132

5- اهرمهای مورد استفاده برای سفارشی کردن یک سایت... 136

6- یک سایت چگونه با مشتریان خود ارتباط بر قرار می کند؟ 139

7- اتصال یک وب سایت با وب سایتهای دیگر. 142

8- اشکال مختلف تجارت در وب سایت... 144

تبادل الکترونیکی داده ها (EDI) 147

1- انواع خرید یک شرکت... 147

2- خرید مواد مستقیم.. 147

3- تبادل الکترونیکی داده ها (EDI) 148

EDI های نسل آینده 150

منابع.......................................................................................................... 151

چکیده:

این پژوهش شامل دو بخش می باشدبخش اول در مورد داده کاوی و تکنیکها ومتدلوژی های ان و بخش دوم در مورد تجارت الکترونیک می باشد.

بخش اول شامل مطالبی در مورد عناصر داده کاوی و سپس کاربردهای داده کاوی در موارد مختلف و تفاوت داده کاوی با پایگاه داده و متدلوژی ها و مراحل داده کاوی وهمچنین وظایف داده کاوی توضیحاتی داده شده است.

بخش دوم در مورد تجارت الکترونیکی که در ان مقدمه ای از تجارت اتکترونیک و شکل دهی موقعیت بازار را بیان نموده است.

مقدمه

از هنگامی که رایانه در تحلیل و ذخیره سازی داده ها بکار رفت (1950) پس از حدود 20 سال، حجم داده ها در پایگاه داده ها دو برابر شد. ولی پس از گذشت دو دهه و همزمان با پیشرفت فن آوری اطلاعات(IT) هر دو سال یکبار حجم داده ها، دو برابر شده و همچنین تعداد پایگاه داده ها با سرعت بیشتری رشد نمود. این در حالی است که تعداد متخصصین تحلیل داده ها با این سرعت رشد نکرد. حتی اگر چنین امری اتفاق می افتاد، بسیاری از پایگاه داده ها چنان گسترش یافته‌اند که شامل چندصد میلیون یا چندصد میلیارد رکورد ثبت شده هستند.امکان تحلیل و استخراج اطلاعات با روش های معمول آماری از دل انبوه داده ها مستلزم چند روز کار با رایانه های موجود است.[3]

حال با وجود سیستم های یکپارچه اطلاعاتی، سیستم های یکپارچه بانکی و تجارت الکترونیک، لحظه به لحظه به حجم داده ها در پایگاه داده های مربوط اضافه شده و باعث به وجود آمدن حانبارهای عظیمی از داده ها شده است.

این واقعیت، ضرورت کشف و استخراج سریع و دقیق دانش از این پایگاه داده ها را بیش از پیش نمایان کرده است، چنان که در عصر حاضر گفته می شود اطلاعات طلاست.

هم اکنون در هر کشور، سازمان، شرکت و غیره برای امور بازرگانی، پرسنلی، آموزشی، آماری و غیره پایگاه داده ها ایجاد یا خریداری شده است. به طوری که این پایگاه داده ها برای مدیران، برنامه ریزان، پژوهشگران جهت، تصمیم گیری های راهبردی، تهیه گزارش های مختلف، توصیف وضعیت جاری خود و سایر اهداف می تواند مفید باشد. بسیاری از این داده ها از نرم افزارهای تجاری، مثل کاربردهای مالی، ERPها، CRMها و web log ها، می آیند. نتیجه این جمع آوری داده ها این می‌شود که در سازمانها، داده ها غنی ولی دانش ضعیف، است. جمع آوری داده ها، بسیار انبوه می‌شود و بسرعت اندازه آن افزایش می یابد و استفاده عملی از داده ها را محدود می سازد.[2]

داده‌کاوی استخراج و تحلیل مقدار زیادی داده بمنظور کشف قوانین و الگوهای معنی دار در آنهاست. هدف اصلی داده کاوی، استخراج الگوهایی از داده ها، افزایش ارزش اصلی آنها و انتقال داده ها بصورت دانش است.

داده‌کاوی، بهمراه OLAP، گزارشگری تشکیلات اقتصادی(Enterprise reporting) و ETL، یک عضو کلیدی در خانواده محصول Business Intelligence(BI)، است.[2Error! Reference source not found.]

حوزه‌های مختلفی وجود دارد که در آنها حجم بسیاری از داده در پایگاه‌داده‌های متمرکز یا توزیع شده ذخیره می‌شود. برخی از آنها به قرار زیر هستند: [6Error! Reference source not found.]

  • کتابخانه دیجیتال: یک مجموعه سازماندهی شده از اطلاعات دیجیتال که بصورت متن در پایگاه‌داده‌های بزرگی ذخیره می شوند.
  • آرشیو تصویر: شامل پایگاه‌داده بزرگی از تصاویر به شکل خام یا فشرده.
  • اطلاعات زیستی: بدن هر انسانی از 50 تا 100 هزار نوع ژن یا پروتئین مختلف ساخته شده است. اطلاعات زیستی شامل تحلیل و تفسیر این حجم عظیم داده ذخیره شده در پایگاه‌داده بزرگی از ژنهاست.
  • تصاویر پزشکی: روزانه حجم وسیعی از داده‌های پزشکی به شکل تصاویر دیجیتال تولید می‌شوند، مانند EKG، MRI، ACT، SCAN و غیره. اینها در پایگاه‌داده‌های بزرگی در سیستم‌های مدیریت پزشکی ذخیره می شوند.
  • مراقبت‌های پزشکی: بجز اطلاعات بالا، یکسری اطلاعات پزشکی دیگری نیز روزانه ذخیره می‌شود مانند سوابق پزشکی بیماران، اطلاعات بیمه درمانی، اطلاعات بیماران خاص و غیره.
  • اطلاعات مالی و سرمایه‌گذاری: این اطلاعات دامنه بزرگی از داده‌ها هستند که برای داده‌کاوی بسیار مطلوب می‌باشند. از این قبیل داده‌ها می‌توان از داده‌های مربوط به سهام، امور بانکی، اطلاعات وام‌ها، کارت‌های اعتباری، اطلاعات کارت‌های ATM، و کشف کلاه‌برداری‌ها می باشد.
  • ساخت و تولید: حجم زیادی از این داده‌ها روزانه به اشکال مختلفی در کارخانه‌ها تولید می‌شود. ذخیره و دسترسی کارا به این داده‌ها و تحلیل آنها برای صنعت تولید بسیار بااهمیت است.
  • کسب و کار و بازاریابی: داده‌ لازم است برای پیش‌بینی فروش، طراحی کسب و کار، رفتار بازرایابی، و غیره.
  • شبکه راه‌دور: انواع مختلفی از داده‌ها در این صنعت تولید و ذخیره می شوند. آنها برای تحلیل الگوهای مکالمات، دنبال کردن تماس‌ها، مدیریت شبکه، کنترل تراکم، کنترل خطا و غیره، استفاده می‌شوند.
  • حوزه علوم: این حوزه شامل مشاهدات نجومی، داده زیستی، داده ژنومیک، و غیره است.
  • WWW: یک حجم وسیع از انواع مختلف داده که در هر جایی از اینترنت پخش شده‌اند.

در بیشتر این حوزه‌ها، تحلیل داده‌ها یک روال دستی بود. یک تحلیلگر کسی بود که با داده‌ها بسیار آشنا بود و با کمک روش‌های آماری، خلاصه‌هایی تهیه و گزارشاتی را تولید می‌کرد. در یک حالت پیشرفته‌تر، از یک پردازنده پیچیده پرسش استفاده می‌شد. اما این روش‌ها با افزایش حجم داده‌ها کاملا بلااستفاده شدند.

واژه های «داده‌کاوی» و «کشف دانش در پایگاه داده»[1] اغلب به صورت مترادف یکدیگر مورد استفاده قرار می گیرند. کشف دانش به عنوان یک فرآیند در شکل1 نشان داده شده است.

کشف دانش در پایگاه داده فرایند شناسایی درست، ساده، مفید، و نهایتا الگوها و مدلهای قابل فهم در داده ها می‌باشد. داده‌کاوی، مرحله‌ای از فرایند کشف دانش می‌باشد و شامل الگوریتمهای مخصوص داده‌کاوی است، بطوریکه، تحت محدودیتهای مؤثر محاسباتی قابل قبول، الگوها و یا مدلها را در داده کشف می کند[3Error! Reference source not found.]. به بیان ساده‌تر، داده‌کاوی به فرایند استخراج دانش ناشناخته، درست، و بالقوه مفید از داده اطلاق می‌شود. تعریف دیگر اینست که، داده‌کاوی گونه‌ای از تکنیکها برای شناسایی اطلاعات و یا دانش تصمیم‌گیری از قطعات داده می‌باشد، به نحوی که با استخراج آنها، در حوزه‌های تصمیم‌گیری، پیش بینی، پیشگویی، و تخمین مورد استفاده قرار گیرند. داده‌ها اغلب حجیم، اما بدون ارزش می‌باشند، داده به تنهایی قابل استفاده نیست، بلکه دانش نهفته در داده ها قابل استفاده می باشد. به این دلیل اغلب به داده کاوی، تحلیل داده ای ثانویه[2] گفته می‌شود.


دانلود فایل داده کاوی: مفاهیم، روشها، کاربردها، آینده

امروزه با گسترش سیستم های پایگاهی و حجم بالای داده ها ی ذخیره شده در این سیستم ها، نیاز به ابزاری است تا بتوان داده های ذخیره شده پردازش کرد و اطلاعات حاصل از این پردازش را در اختیار کاربران قرار داد
دسته بندی کامپیوتر و IT
فرمت فایل doc
حجم فایل 146 کیلو بایت
تعداد صفحات فایل 24
داده کاوی: مفاهیم، روشها، کاربردها، آینده

فروشنده فایل

کد کاربری 1024
  • داده کاوی: مفاهیم، روشها، کاربردها، آینده
  • مقدمه

معرفی دادهکاوی و دلایل پیدایش آن

تعاریف داده کاوی

جایگاه دادهکاوی در علوم کامپیوتر

  • · طبقه بندی روش های داده کاوی

1. داده کاوی توصیفی یا توصیف کننده

2. داده کاوی پیشگویانه

  • · مراحل و اجزای یک فرآیند دادهکاوی

1. بیان مسئله و فرموله کردن فرضیه

2. انتخاب و جمع آوری داده ها

3. تبدیل و پیش پردازش داده ها

4. برآورد مدل یا کاوش در داده ها

5. تفسیر نتیجه یا تفسیر مدل و رسیدن به نتایج

  • · آماده سازی داده ها

1. مدل استاندارد داده ها

2. دو وظیفه اصلی در آماده سازی داده ها

  • · تبدیل و تغییر وضعیت داده های خام

1. نرمال سازی

1-1 مقیاس دهی اعشاری

2-1 نرمال سازی حداقل-حداکثر

3-1 نرمال سازی انحراف معیار

2. یکنواخت سازی داده ها

3. تفاضل ها و نسبت ها

  • · مفهوم داده های از دست رفته و راه حل جبران داده های از دست رفته
  • · مفهوم و روش های تشخیص داده های نامنطبق

1. روش های آماری 2. تشخیص داده های نامنطیق برمبنای فاصله 3. روش ها و تکنیک های برمبنای انحراف

  • · کاهش داده ها

  1. 1. اعمال اصلی در فرایند کاهش داده ها
  2. 2. یافته های حاصل از کاهش داده ها

2-1 کاهش زمان محاسبه.

2-2 افزایش یادگیری در دقت پیشگویانه/توصیفی.

2-3 سادگی در ارائه مدل داده کاوی.

  • · روش های نمونه گیری برای نمونه های بزرگ

1. نمونه گیری سیستمی.

2. نمونه گیری تصادفی.

3. نمونه گیری لایه ای.

4. نمونه گیری معکوس.

مقدمه

امروزه با گسترش سیستم های پایگاهی و حجم بالای داده ها ی ذخیره شده در این سیستم ها، نیاز به ابزاری است تا بتوان داده های ذخیره شده پردازش کرد و اطلاعات حاصل از این پردازش را در اختیار کاربران قرار داد.

با استفاده ار پرسش های ساده درSQL و ابزارهای گوناگون گزارش گیری معمولی، می توان اطلاعاتی را در اختیار کاربران قرار داد تا بتوانند به نتیجه گیری در مورد داده ها و روابط منطقی میان آنها بپردازند اما وقتی که حجم داده ها بالا باشد، کاربران هر چقدرحرفه ای و با تجربه باشند نمی توانند الگوهای مفید را در میان حجم انبوه داده ها تشخیص دهند و یا اگر قادر به این کار هم با شند، هزینه عملیات از نظر نیروی انسانی و مالی بسیار بالا است.


بنابراین میشود گفت که درحال حاضر یک تغییر الگو از مدل سازی و تحلیل های کلاسیک برپایه اصول اولیه به مدل های درحال پیشرفت و تحلیل های مربوط بطور مستقیم از داده ها وجود دارد.

داده کاوی یکی از مهمترین این روشها است که به وسیله آن الگوهای مفید در داده ها با حداقل دخالت کاربران شناخته می شوند و اطلاعاتی را در اختیار کاربران و تحلیل گران قرار می دهند تا براساس آنها تصمیمات مهم و حیاتی در سازمانها اتخاذ شوند.



تعاریف داده کاوی

در متون آکادمیک تعاریف گوناگونی برای داده کاوی ارائه شده اند. در برخی از این تعاریف داده کاوی در حد ابزاری که کاربران را قادر به ارتباط مستقیم با حجم عظیم داده ها می سازد معرفی گردیده است و در برخی دیگر، تعاریف دقیقتر که درآنها به کاوش در داده ها توجه می شود موجود است.

برخی از این تعاریف عبارتند از :

  1. داده کاوی عبارت است از فرایند استخراج اطلاعات معتبر، از پیش ناشناخته، قابل فهم و قابل اعتماد از پایگاه داده های بزرگ و استفاده از آن در تصمیم گیری در فعالیت های تجاری مهم.
  2. فرایند نیم خودکار تجزیه و تحلیل پایگاه داده های بزرگ به منظور یافتن الگوهای مفید اطلاق می شود.
  3. داده کاوی یعنی فرایند جستجو در یک پایگاه داده ها برای یافتن الگوهایی میان داده ها.
  4. داده کاوی یعنی تجزیه و تحلیل مجموعه داده های قابل مشاهده برای یافتن روابط مطمئن بین داده ها.
  5. داده کاوی یعنی استخراج دانش کلان ، قابل استناد و جدید از پایگاه داده ها ی بزرگ.


نکته: همانگونه که در تعاریف گوناگون داده کاوی مشاهده می شود، تقریبا در تمامی تعاریف به مفاهیمی چون استخراج دانش ، تحلیل و یافتن الگوی بین داده ها اشاره شده است.


" داده کاوی فرآیندی است که طی آن با استفاده از ابزار های تحلیل داده به دنبال کشف الگوها و ارتباطات میان داده های موجود که ممکن است منجر به استخراج اطلاعات جدیدی از پایگاه داده گردند، می باشد."



در داده کاوی از بخشی از به نام تحلیل اکتشافی داده ها استفاده می شود که در آن بر کشف اطلاعات نهفته و ناشناخته از درون حجم انبوه داده ها تاکید می شودبنابراین می توان گفت در داده کاوی تئوریهای پایگاه داده ها، هوش مصنوعی، یادگیری ماشین وعلم آمار را در هم می آمیزند تا زمینه کاربردی فراهم شود.

باید توجه داشت که اصطلاح داده کاوی زمانی به کار برده می شود که با حجم بزرگی از داده ها در حد گیگابایت یا ترابایت، مواجه باشیم که از این نظر یکی از بزرگترین بازارهای هدف، انبارجامع داده ها، مراکز داده وسیستم های پشتیبانی تصمیم برای بدست آوردن تخصص هایی در صنایعی مثل شبکه های توزیع مویرگی، تولیدف مخابرات، بیمه و... می باشد.


دانلود فایل پروپوزال شناسایی وب سایت فیشینگ در بانکداری الکترونیکی با منطق فازی

ظهور بانکداری الکترونیکی موجب تغییر در انجام ارتباطات ، عملیات و تراکنش های بانکی شده است در این میان سرقت هویت و اطلاعات به روش های مختلف صورت می گیرد که فیشینگ رایجترین آنهاست
دسته بندی کامپیوتر و IT
فرمت فایل doc
حجم فایل 84 کیلو بایت
تعداد صفحات فایل 8
پروپوزال شناسایی وب سایت فیشینگ در بانکداری الکترونیکی با منطق فازی

فروشنده فایل

کد کاربری 15

ظهور بانکداری الکترونیکی موجب تغییر در انجام ارتباطات ، عملیات و تراکنش های بانکی شده است . در این میان سرقت هویت و اطلاعات به روش های مختلف صورت می گیرد که فیشینگ رایجترین آنهاست که بیشتر از طریق وب سایت بانکداری الکترونیکی و ایمیل انجام می شود. ما در اینجا به بررسی سیستم های هوشمند برای تشخیص سریع تر و کار آمد تر این وب سایت ها با استفاده از طبقه بندی مجموعه های فازی می پردازیم . در اینجا ، بازیابی اطلاعات مربوطه با توجه به نیاز های اطلاعاتی کاربر است . به طور کلی فرایند بازاریابی اطلاعات از دو مرحله تشکیل شده است. مرحله اول مدل های بازیابی احتمالی که به محاسبه ی ارتباط بین نیاز کاربر به اطلاعات و هریک از اسناد موجود در مجموعه می پردازد. در مرحله دوم به تمرکز روی چگونگی رتبه بندی اسناد محاسبه شده پرداخته می شود.........

واژگان کلیدی: بازیابی اطلاعات ، داده کاوی ، مجموعه های فازی ،منطق فازی ، فیشینگ

فهرست مطالب

الف - عنوان پایان نامه

ب - واژگان کلیدی

تعریف مسأله و بیان اصلی تحقیق

سابقه و ضرورت انجام تحقیق

فرضیه ها

هدف ها

چه کاربردهائی از انجام این تحقیق متصور است

استفاده کنندگان از نتیجة پایان نامه

جنبة جدید بودن و نو آوری طرح در چیست ؟

روش انجام تحقیق

روش و ابزار گردآوری اطلاعات

روش آماری اجرای پایان نامه

جدول زمانبندی مراحل انجام تحقیق

فهرست منابع مورد استفاده در نگارش این پیشنهادیه


دانلود فایل نگاهی بر داده کاوی و کشف قوانین وابستگی

امروزه داده کاوی به عنوان یکی از مهمترین مسائل هوش مصنوعی و پایگاه داده، محققان یسیاری را به خود جذب کرده است در این تحقیق ابتدا نگاه کلی بر داده کاوی، استراتژیهای داده کاوی و داریم،
دسته بندی کامپیوتر و IT
فرمت فایل doc
حجم فایل 274 کیلو بایت
تعداد صفحات فایل 40
نگاهی بر داده کاوی و کشف قوانین وابستگی

فروشنده فایل

کد کاربری 1024

مقاله نگاهی بر داده کاوی و کشف قوانین وابستگی

چکیده:
امروزه داده کاوی به عنوان یکی از مهمترین مسائل هوش مصنوعی و پایگاه داده، محققان یسیاری را به خود جذب کرده است. در این تحقیق ابتدا نگاه کلی بر داده کاوی، استراتژیهای داده کاوی و... داریم، سپس مسأله کشف قوانین وابستگی در پایگاه داده را به تفضیل بررسی کردیم و نگاهی به الگوریتمهای موجود برای آن داشتیم. سپس مسأله کشف قوانین وابستگی در پایگاه داده های پویا را مورد بحث قرار دادیم و الگوریتم های ارائه شده مربوطه را مطرح کردیم.


Data mining(داده کاوی)
تعریف :
داده کاوی فرآیند بکارگیری یک یا چند تکنیک آموزش کامپیوتر، برای تحلیل و استخراج داده های یک پایگاه داده می باشد.در واقع هدف داده کاوی یافتن الگوهایی در داده هاست.
دانش کسب شده از فرآیند داده کاوی بصورت مدل یا تعمیمی از داده ها نشان داده می شود.
چندین روش داده کاوی وجود دارد با این وجود همه روشها “ آموزش بر مبنای استنتاج “ را بکار می برند.
آموزش بر مبنای استنتاج، فرآیند شکل گیری تعاریف مفهوم عمومی از طریق مشاهده مثالهای خاص از مفاهیمی که آموزش داده شده اند، است.
مثال زیر نمونه ای از دانش بدست امده از طریق فرایند اموزش بر مبنای استنتاج است:
آیا تا کنون فکر کرده اید، فروشگاههای بزرگ اینترنتی در mail های خود به مشتریان از چه تبلیغاتی استفاده می کنند؟ و آیا این تبلیغات برای همه مشتریان یکسان است؟
پاسخ این است که از روی دانش کسب شده از اطلاعات خرید افراد و نتیجه گیری از این دانش، این کار را انجام می دهند.مثلا در نظر بگیرید یک قانون در پایگاه داده بصورت زیر استخراج می شود:
دقت = 80% : سیگار می خرند ^ نان می خرند کسانی که شیر می خرند
از روی این قانون فروشگاه می تواند به تمام کسانی که شیر می خرند تبلیغات سیگار و انواع نان را نیز بفرستد.همچنین این قانون در چیدن قفسه های فروشگاه نیز بی تاثیر نخواهد بود.
{شیر و نان و سیگار در قفسه های کنار هم چیده شوند}

کشف دانش در پایگاه داده 1
KDD یا کشف دانش در پایگاه داده اصطلاحی است که مکررا بجای داده کاوی بکار می رود. از نظر تکنیکی، KDD کاربردی از روشهای علمی داده کاوی است.
بعلاوه برای انجام داده کاوی فرایند KDD شامل :
1- یک روش برای تهیه داده ها و استخراج داده ها ،
2- تصمیم گیری درباره عملی که پس از داده کاوی باید انجام شود،
می باشد.

آیا داده کاوی برای حل مسائل ما مناسب است؟
تصمیم گیری در مورد اینکه آیا داده کاوی را به عنوان استراتژی حل مساله بکار ببریم یا نه، یک مساله دشوار است.
اما به عنوان نقطه شروع چهار سؤال عمومی را باید در نظر بگیریم :
1. آیا به وضوح می توانیم مساله را تعریف کنیم ؟
2. آیا بطور بالقوه داده با معنی وجود دارد ؟
3. آیا داده ها شامل “ دانش پنهان” هستند یا فقط برای هدف گزارشگری مناسبند ؟
4. آیا هزینه پردازش داده (برای داده کاوی) کمتر از سود حاصل از دانش پنهان بدست آمده از پروژه داده کاوی است ؟
یک مدل پردازش داده کاوی ساده :
در یک دید کلی ، ما می توانیم داده کاوی را به عنوان یک فرآیند چهار مرحله ای تعریف کنیم :
1. جمع آوری یک مجموعه از داده ها برای تحلیل
2. ارائه این داده ها به برنامه نرم افزاری داده کاوی
3. تفسیر نتایج
4. بکارگیری نتایج برای مساله یا موقعیتهای جدید