| دسته بندی | پزشکی |
| بازدید ها | 1 |
| فرمت فایل | doc |
| حجم فایل | 61 کیلو بایت |
| تعداد صفحات فایل | 25 |
بطور معمول در هر فرد سالم دو کلیه وجود دارد که هر یک در یکطرف ستون مهره ها و زیر دنده های تحتانی واقع شده اند. کلیه ها به رنگ قرمز متمایل به قهوه ای بوده و از نظر شکل شبیه لوبیا می باشند. هر کلیه به اندازه مشت بسته فرد است. اکثر اعضائ بدن برای عملکرد مطلوب وابسته به کلیه ها هستند
وظایف کلیه ها
مهمترین وظیفه کلیه ها برداشت مواد زائد از خون و بازگرداندن خون تصفیه شده به بدن می باشد. هر دقیقه حدود یک لیتر خون (یک پنجم خونی که توسط قلب پمپ می شود) از طریق سرخرگ کلیوی وارد کلیه ها می شود. پس از اینکه خون تصفیه شد خون تصفیه شده از طریق سیاهرگ های کلیوی به بدن باز می گردد.
داخل هر کلیه متجاوز از یک میلیون واحد بسیار ریز عملکردی بنام نفرون وجود دارد. هر نفرون از یک صافی بسیار کوچک بنام کلافه (گلومرول) که به یک لوله کوچک (توبول) متصل است تشکیل می شود. آب و مواد زائد توسط این صافی از خون جدا می شوند و به داخل لوله های کوچک (توبول ها) جریان پیدا می کنند.
قسمت عمده این آب توسط لوله های کوچک باز جذب می شود و مواد زائد بصورت غلیظ وارد ادرار میشوند تا دفع گردند.
ادرارهای جمع شده از لوله های کوچک وارد قسمت قیفی شکل بنام لگنچه کلیه شده و سپس از طریق لوله ای بنام حالب وارد مثانه می شود. مثانه ادرار را تا زمانی که ادرار کنید نگهداری می کند. پس از مثانه ادرار از طریق لوله ای بنام پیشابراه از بدن خارج می شود. کلیه سالم بطور معمول یک تا ٢ لیتر ادرار در روز و بر اساس میزان مایعات دریافتی تولید می کند. کلیه سالم قابلیت افزایش فعالیت خود را دارد بطوریکه اگر یک کلیه از دست رود کلیه دیگر بزرگ شده و کار دو کلیه را انجام خواهد داد.
سه وظیفه اصلی کلیه ها:
1 کلیه ها آب بدن را تنظیم می کنند:
برای اینکه بدن شما بدرستی و به نحو مطلوب فعالیت کند لازم است که دارای حجم مناسب آب باشد. یکی از مهمترین وظایف کلیه ها برداشت آب اضافی یا حفظ آب بدن در موارد ضرورت می باشد.
2 کلیه ها مواد زائد را برداشت می کنند:
بسیاری از مواد در خون و مایعات بدن باید در اندازه مناسب وجود داشته باشند تا بدن به درستی عملکرد داشته باشد. برای مثال: سدیم و پتاسیم مواد معدنی هستند که از مواد غذایی بدست می آیند. این مواد معدنی برای سلامتی لازم هستند اما باید در حد معینی نگهداشته شوند. زمانیکه کلیه ها بدرستی فعالیت کنند، مواد زائد از بدن داخل ادرار ترشح می شوند همچنین کلیه ها در تنظیم سایر مواد معدنی در بدن مانند: کلسیم و فسفر که برای تشکلی استخوان لازمند، کمک می کنند مواد زائد مانند: اوره و کراتی نیز باید از بدن خارج شوند . اوره و سایر مواد زائد زمانی که بدن پروتئین ها مانند: گوشت را تجزیه می کند، تشکیل می شوند. کراتی نین یک محصول زائد عضلات است. اگر فعالیت کلیه ها کاسته شود، اوره و کراتی نیز در خون افزایش می یابند بسیاری از محصولات زائد اگر از مایعات بدن جدا نشوند برای بدن سمی هستند برای مثال، وقتی فردی دارویی مصرف می کند، مواد زائد شیمیایی که از مصرف این دارو در بدن بوجود می آیند، عمدتا توسط کلیه ها از بدن خارج می شوند.
٣- کلیه ها هورمون می سازند:
کلیه های سالم پیک (پیغام بر) های شیمیایی مهمی بنام هورمون ها را نیز می سازند. این هورمون ها در جریان خون گردش کرده و بعضی از عملکردهای بدن مانند: فشار خون، ساخت گویچه های قرمز و برداشت کلسیم از روده ها را تنظیم می کنند.
علائم بیماری کلیوی
بیماری کلیوی معمولا بی سر و صدا پیشرفت می کند و قبل از ایجاد هر گونه شکایت موجب تخریب قسمت عمده ای از فعالیت و عملکرد کلیه می گردد. بنابراین افراد در معرض خطر پیشرفت بیماری کلیوی باید بطور مرتب مورد ارزیابی قرار گیرند. این افراد کسانی هستند که مبتلا به بیماری قند - دیابت - پرفشاری خون، بیماری عروقی و وابستگان نزدیک افراد مبتلا به بیماریهای ارثی کلیه می باشند
گاهی اوقات افراد با بیماری شدید کلیوی نیز بدون علامت می باشند. این موضوع اهمیت آزمایش خون یا ادرار را در بررسی مشکلات کلیوی روشن می کند. بهرحال شکایات و علائم زیر می توانند نشانگر بیماری کلیوی باشند که در صورت وجود، انجام آزمایشات و بررسی های بیشتر توصیه می شود
| دسته بندی | تغذیه |
| بازدید ها | 1 |
| فرمت فایل | doc |
| حجم فایل | 33 کیلو بایت |
| تعداد صفحات فایل | 28 |
تعریف علوم مواد غذایی
در این علم مواد غذایی از نظر تولید ،تهیه ،نگهداری ،توزیع و خواص بیژلوژی و شیمی - فیزیک مورد بحث قرار می گیرند ضمناً ویژگیهایی مانند منظره ،بو،طعم ،مزه مواد غذایی و همچنین ترکیبات سازنده مواد غذایی و دگرگونی این ترکیبات مورد استفاده بررسی می باشد .
2ـ تعریف علوم تغذیه
بررسی سر نوشت ملکولی مواد غذاییبعد از خورده شدن د ربدن انسان و نیازهای کمی و کیفی بدن به مواد غذایی وپدیده ها و عوارض بیولوژی و پاتولوژی ناشی از مواد غذایی مورد بحث علوم تغذیه می باشد در هر حال علوم تغذیه و مواد غذایی دانش های متداخلی هستند که اصول یکی در دیگری مورد عمل می باشد و در این دانش از کلیه علوم از جمله علوم ریاضی ،علوم زیستی ،علوم اجتماعی و انسانی استفاده می شود .
3ـ تعریف انسان متوسط از نظر تغذیه :
الف ـ مرد متوسط :
مردی است سالم سن 25 سال فعالیت متوسط وزن 65 کیلو که در شرایط حرارتی متوسط قرار دارد با 8 ساعت کار روزانه ملایم که 4 ساعت حالت نشسته دارد و حدود 5/1 ساعت راه میرود چنین فردی باید روزانه 3200 کالری حرارت از جیره غذایی خود تامین نماید .
ب ـ زن متوسط
زنی است سالم 25 ساله وزن 55 کیلودر شرایط حرارتی متوسط زندگی می کند و فعالیت فیزیکی معمول دارد چنین زنی باید از جیره غذایی روزانه خود 2200کالری حرارت به دست آورد .
4ـ تعریف جیره غذایی
کلیه مواد خوراکی که یک فرد در مدت 24 ساعت مصرف می نماید تا نیازمندیهای بدن او برآورده گردد به جیره غذایی متعادل معروف است پس جیره غذایی بر حسب شرایط مختلف از نظر سلامتی ،جنس ، سن وضع رشد ،حالات فیزیولوژیکی و نوع کار باید متفاوت باشد .
5- تعریف غذا و ماده غذایی
(Nutriments,Aliments)
کلیه غذاهایی که انسان مصرف می کند به همان شکلی که وارد دستگاه گوارش شده است قابل جذب نمی باشد ولی بعد از یک سلسله تغییرات مکانیکی ،فیزیکی ،و شیمیایی ه صورتی در می آید تا قابل جذب شود .
آنچه که در خوراکی ها خورده می شوند غذا یا (Aliments) نام دارند ولی مولکولهایی که از این غذا بعد از گوارش ایجاد شده و پس از جذب به محیط سلولی می رسند ماده غذایی یا (Nutriments) نامیده می شود بعضی از غذاها طوری هستند که به همان شکل خورده شده قابل جذب اهد لذا غذا و ماده غذایی آنها به یک شکل خواهد داشت مانند آب و الکل اتیلیک در مشروبات الکلی .
6ـ تعریف ضریب هضم
| دسته بندی | فیزیک |
| بازدید ها | 1 |
| فرمت فایل | doc |
| حجم فایل | 70 کیلو بایت |
| تعداد صفحات فایل | 23 |
محققین گمان می برند به زودی می توانند راه حلی برای یکی از غامض ترین مسائل فیزیک جدید بیابند: یافتن راهی برای اعدام گربه شرودینگر. گربه خیالی شرودینگر از سال ۱۹۳۵ تاکنون با دانشمندان لجبازی کرد و آنان را سردرگم کرده است. هیچ کس تنفر گربه دوستان را در سال ۱۹۳۵ از یاد نمی برد چرا که در آن سال از یک گربه برای انجام آزمایشی جهت بیان وضعیت های دشواری که در تئوری کوانتوم به وجود می آید استفاده شد. اروین شرودینگر (Schrodinger Erwin) فیزیکدان اتریشی تئوری کوانتوم را ارائه کرد و در توسعه آن نقش بسیار موثری ایفا کرد. تئوری کوانتوم که اغلب از آن به عنوان یکی از موفق ترین تئوری های علمی نام می برند ـ چرا که بدون آن فاقد لیزر، سلاح های هسته ای و بسیاری از اختراعات دیگر بودیم ـ برای ما توضیح می دهد که طبیعت در سطوح زیر اتمی چگونه رفتار می کند. در سطوح زیراتمی قواعد فیزیک کلاسیک که هر روزه آن ها را تجربه می کنیم، اعتبار و کارآیی خود را از دست می دهند. برای مثال می توان گفت ذرات زیر اتمی در یک آن می توانند در دو مکان مختلف باشند، دیگر آنکه به نظر می رسد می توان اطلاعات را سریع تر از سرعت نور منتقل کرد.
قواعد حاکم بر دنیای کوانتوم آنچنان عجیب است که حتی آلبرت اینشتین هم دست هایش را به علامت تسلیم بالا برد و گفت: «اگر فیزیک کوانتوم، صحیح باشد، آن وقت باید اذعان کرد قوانین جهان بسیار عجیب است. » حتی خود شرودینگر هم از تفسیر یافته های خود ناخرسند بود و با تاسف بسیار به یکی از همکاران خود گفته است: «از این که در مورد تئوری کوانتوم کار می کند چندان راضی نیست. »مسئله ای که اینشتین، شرودینگر و فیزیکدانان پس از آن ها را تا این حد متحیر کرد تقابل این مشاهدات با واقعیت ها بود.
مطابق تئوری کوانتوم، ذرات فقط وقتی وجود دارند که بتوان آن ها را «مشاهده» کرد.
هر چند که تجربیات هر روزه ما چیزی خلاف این را بیان می کند. در ابتدای کار توصیف شرودینگر از تابع موج ـ مفهومی ریاضی که موقعیت و حرکت های ممکن ذرات را بیان می کند ـ بسیار عجیب به نظر می رسید. نه سال بعد وی آزمایش گربه را طراحی کرد تا بتواند توسط این آزمایش اختلاف بین واقعیت های ملموس توسط انسان و واقعیت های دنیای کوانتوم را که خود خالق آن بود بیان کند. در این «آزمایش ذهنی» که گاهی اوقات از آن به عنوان آزمایشی خیالی نیز نام می برند، شرودینگر گربه ای را درون یک جعبه در بسته قرار داد. در این جعبه اسلحه ای کشنده که ماشه ای حساس دارد و یک اتم رادیواکتیو هم قرار دارند.
احتمال آنکه اتم رادیواکتیو طی مدت یک ساعت از خود پرتوی ساطع کند ۵۰ درصد است. اگر اتم رادیواکتیو تجزیه شود، انرژی آزاد شده طی این فرآیند، ماشه اسلحه را خواهد کشید. می توان گفت بعد از گذشت یک ساعت با برداشتن در جعبه می توان دریافت آیا گربه زنده است یا مرده.
| دسته بندی | فیزیک |
| بازدید ها | 1 |
| فرمت فایل | doc |
| حجم فایل | 21 کیلو بایت |
| تعداد صفحات فایل | 15 |
عدسی ها همانند آینهها دارای تصاویر حقیقی و مجازی هستند، این تصاویر از پرتوهای همگرا شونده و واگرا شونده بازتابی ایجاد میشود. بر خلاف آینهها در عدسیها عبور نور نیز مطرح است و تصاویر ممکن است در پشت و جلوی عدسی شکل گیرد. عدسیهایی که ضخامت قسمتهای کناریش بزرگتر باشد، پرتوهای موازی را همگرا میکند و عدسی محدب نام دارد، که دارای فاصله کانونی مثبت میباشد.
بر خلاف آینهها دارای دو کانون در فضاهای جلو و پشت عدسی میباشند، عدسیهایی که ضخامت قسمت محوری آنها کمتر از ضخامت قسمت کناری باشد، پرتوهای موازی را از هم باز میکنند و دارای فاصله کانونی منفی هستند و عدسی مقعر نام دارند، که اینها نیز دارای دو کانونی در فضای جسم وتصویر هستند.
انواع عدسیها
عدسی محدب (کوژ )
عدسیهایی که نور را همگرا میکنند و جهت تصویر سازی حقیقی و نیز همگرا نمودن پرتوهای تابشی از نقاط دور مانند پرتوهای ستارگان مورد استفاده قرار میگیرند.
عدسی مقعر ( کاو )
این عدسیها نور را واگرا میکنند و جهت واگرا نمودن نورها و اصلاح برخی سیستمها که نیاز به واگرایی نور را دارد از جمله چشم مورد استفاده واقع میشوند.
قواعد نحوه رسم پرتو در عدسیها
اکثر قواعد همانند آینههاست و در حالت کلی عمدهترین آنها که پرتوهای خاصی را شامل میشود عبارتند از :
پرتو موازی با محور نوری بعد از برخورد به عدسی و عبور از آن، از نقطه کانون میگذرد که فاصله آن از رأس عدسی f است.
پرتوهای عبوری از کانون عدسی بعد از شکست در آن به موازات محور نوری خواهد بود.
پدیده دومی که علاوهبر بازتاب در دستگاههای نوری مهم میباشد شکست هست.
آیا از خود پرسیدید که چرا وقتی چوبی را وارد آب استخر میکنیم از بیرون کج دیده میشود؟
پرتوهایی که از یک عدسی میگذرد از مسیر اولیهاش منحرف میشود؟
تیری را که از پشت شیشهای به یک نقطهای هدفگیری کنیم، به هدف نمیخورد؟ و ...
در سیستمهای نوری در برخی ساختارها حضور شکست مفید است ودر برخی از سیستمها ایجاد مزاحمت ( مثلاً اعوجاج ) و ... مینماید . در منشورها این شکست نور است که با انحراف از مسیر اولیه نور سفید را به ما میدهد و ...
نورهای اجسام خارجی که توسط عدسی خود چشم وبرای چشمهای بیمار با همکاری عینکها روی شبکیه چشم جمع میشوند وتشکیل تصویر میدهند.
این تغییر امتداد مسیر پرتوها در عینک وعدسی چشم همان پدیده شکست است.
چون تمام سطح کوچک تخت و کروی با هندسه معین می شوند. ما نیز سطوح اپتیکی سیستمها را به این دو سطح محدود میکنیم.
شکست در سطوح تخت
شکست نور در شیشه ( تیغه نازک ) را بررسی میکنیم : وقتی نور به شیشه میتابد چون طرفین آن هوا ( یا محیطی ) با جنس یکسان است. مثلاً طرفین تیغه شیشهای هوا در سطح اول مقداری منحرف می شود این شکست اولیه یک جابهجایی داخلی را برای این نور سبب میشود و در سطح دوم دوباره یک شکست دیگری پیدا کرده و امتداد خود را مییابد.
| دسته بندی | فیزیک |
| بازدید ها | 1 |
| فرمت فایل | doc |
| حجم فایل | 102 کیلو بایت |
| تعداد صفحات فایل | 24 |
تاریخچه 1
اصول طیف سنجی جرمی 2
دستگاه طیف سنج جرمی 2
سیستم ورودی نمونه 2
روزنه مولکولی 3
محفظه یونیزاسیون 3
پتانسیل یونیزاسیون 4
تجزیه گر جرمی 4
تجزیه گر جرمی و قدرت تفکیک 6
آشکار کننده 6
ثبات آشکار کننده 7
آشنایی با طیفسنجی جرمی(MS) 7
فرآیند دستگاه 8
کاربردها 9
مراجع: 11
طیف سنج جرمی 12
تاریخچه 12
اصول طیف سنجی جرمی 13
دستگاه طیف سنج جرمی 13
سیستم ورودی نمونه 13
روزنه مولکولی 14
محفظه یونیزاسیون 14
پتانسیل یونیزاسیون 15
تجزیه گر جرمی 16
تجزیه گر جرمی و قدرت تفکیک 17
آشکار کننده 17
ثبات آشکار کننده 18
طیفسنجی رامان (RAMAN) 18
کاربردها 20
برخی از کاربردهای مهم طیف سنجی رامان در فناوری نانو عبارتست از: 21
طیف سنج جرمی
اصول طیف سنجی جرمی ، جلوتر از هر یک از تکنیکهای دستگاهی دیگر ، بنا نهاده شده است. تاریخ پایه گذاری اصول اساسی آن به سال 1898 بر میگردد. در سال 1911 ، "تامسون" برای تشریح وجود نئون-22 در نمونهای از نئون-20 از طیف جرمی استفاده نمود و ثابت کرد که عناصر میتوانند ایزوتوپ داشته باشند.
تاریخچه
اصول طیف سنجی جرمی ، جلوتر از هر یک از تکنیکهای دستگاهی دیگر ، بنا نهاده شده است. تاریخ پایه گذاری اصول اساسی آن به سال 1898 بر میگردد. در سال 1911 ، "تامسون" برای تشریح وجود نئون-22 در نمونهای از نئون-20 از طیف جرمی استفاده نمود و ثابت کرد که عناصر میتوانند ایزوتوپ داشته باشند. تا جایی که میدانیم، قدیمیترین طیف سنج جرمی در سال 1918 ساخته شد.
اما روش طیف سنجی جرمی تا همین اواخر که دستگاههای دقیق ارزانی در دسترس قرار گرفتند، هنوز مورد استفاده چندانی نداشت. این تکنیک با پیدایش دستگاههای تجاری که بسادگی تعمیر و نگهداری میشوند و با توجه به مناسب بودن قیمت آنها برای بیشتر آزمایشگاههای صنعتی و آموزشی و نیز بالا بودن قدرت تجزیه و تفکیک ، در مطالعه تعیین ساختمان ترکیبات از اهمیت بسیاری برخوردار گشته است.
اصول طیف سنجی جرمی
به بیان ساده ، طیف سنج جرمی سه عمل اساسی را انجام میدهد:
مولکولها توسط جرایاناتی از الکترونهای پرانرژی بمباران شده و بعضی از مولکولها به یونهای مربوطه تبدیل میگردند. سپس یونها در یک میدان الکتریکی شتاب داده میشوند.
یونهای شتاب داده شده بسته به نسبت بار/جرم آنها در یک میدان مغناطیسی یا الکتریکی جدا میگردند.
یونهای دارای نسبت بار/جرم مشخص و معین توسط بخشی از دستگاه که در اثر برخورد یونها به آن ، قادر به شمارش آنها است، آشکار میگردند. نتایج داده شده خروجی توسط آشکار کننده بزرگ شده و به ثبات داده میشوند. علامت یا نقشی که از ثبات حاصل میگردد یک طیف جرمی است، نموداری از تعداد ذرات آشکار شده بر حسب تابعی از نسبت بار/جرم.
دستگاه طیف سنج جرمی
هنگامی که هر یک از عملیات را بدقت مورد بررسی قرار دهیم، خواهیم دید که طیف سنج جرمی واقعا پیچیدهتر از آن چیزی است که در بالا شرح داده شد.
سیستم ورودی نمونه
قبل از تشکیل یونها باید راهی پیدا کرد تا بتوان جریانی از مولکولها را به محفظه یونیزاسیون که عمل یونیزه شدن در آن انجام میگیرد، روانه ساخت. یک سیستم ورودی نمونه برای ایجاد چنین جریانی از مولکولها بکار برده میشود. نمونههایی که با طیف سنجی جرمی مورد مطالعه قرار میگیرند، میتوانند به حالت گاز ، مایع یا جامد باشند. در این روش باید از وسایلی استفاده کرد تا مقدار کافی از نمونه را به حالت بخار در آورده ، سپس جریانی از مولکولها روانه محفظه یونیزاسیون شوند.
| دسته بندی | فنی و حرفه ای |
| بازدید ها | 1 |
| فرمت فایل | doc |
| حجم فایل | 24 کیلو بایت |
| تعداد صفحات فایل | 19 |
تا نیمه دهه 1960 توجه کمی به نیازجابجایی هوا در سیستمهای تهویه صنعتی شده بود. سیستمهای خروجی با کیفیت بالا بوسیلهی سرویسهای مهندسیای طراحی شده بودند که گهگاهی و یا به طور اتفاقی جابجایی هوا را از محیط کار طراحی میکردند. اما به طور معمول یک پیمانکار معمولی یک سیستم خروجی را بدون درنظر گرفتن سیستم جابجایی هوا نصب میکرد. بسیاری از مشکلات به حساب نیامده در اجرا و انجام سیستمهای خروجی تهویه در گذشته به فقدان جابجایی مناسب هوا نسبت داده شده است.
این مشکلات کهنه و قدیمی برای تولید افزایش سوددهی در دهه 1960 شروع شدند، زمانی که یک مقداری از مکانها و آژانسهای محلی تقاضای سیستمهای جابجایی هوا را برای ارتباط با سیستمهای جدید خروجی کردند. قابل فهم نبود که حتی بدون یک سیستم جابجایی هوا، هوا میتواند بوسیلهی نفوذ و گرما به درون ساختمان کشیده شود، قبل از اینکه خارج شود.
سیستمهای جابجایی هوایی که خوب طراحی شده بودند مقدار بیشتری هوای گرم را نسبت به طریقه معمول تهیه میکردند.
حتی طراحان وظیفه شناس ضرورت ایجاد جابجایی هوا و قابل دسترس ساختن یک تنوعی از واحدهای پکیج شده برپایه ورودی هود، فیلتر، فن و مدلهای گرمایی و سرمایی و شبکههای خروجی که برای نصب این سیستمها به طور تکنیکی و اقتصادی قابل توجه ساخته شده بودند، پذیرفتند بعلاوه هزینه بالا از حالت خروج هوا در نیمکره شمالی تشویق کرده است معمول کردن طراحی برای اینکه گرما را از جریانهای بزرگ خروجی بازیافت کند.
ریسر کوله کردن جریانهای خروجی بعد از اینکه هوا به طور مناسب پاک شد در یک حد محدود عمل میکند. این فصل در مورد 3 تا از این خروجیها بحث خواهد کرد، با تاکید بر روی خروجی پایه از جابجایی اولیه هوا در نصب بازیافت گرما و چرخش هوا از جریان خروجی در این فصل ما از یک مطالعه موردی در مورد کارخانهی ذوب فولاد در شمال نیویورک که یک نقصی در مورد جابجایی هوا دارد استفاده شده و شرح داده شده که چطور طراح اول باید کیمت هوای جابجا شدهی مورد نیاز راحساب کند برای تعادل جریان خروجی و سپس روشها را برای تعیین محل واحد جابجایی هوا جایی که تماس کارگر را برای تماس با هوای آلوده را کاهش بدهد بررسی کند.
برای حل این مشکل و دیگر صنایع سنگین یک سیستم تولید هوا در طول فصل زمستان و پاییز تهیه میکنند. شکل 1-12: سیستمهای جابجایی هوا (RAS- A and RAS- B) B, A شامل واحدهای پایه و مجراهای توزیع هستند. در هردوحالت واحدها بوسیلهی خروجیهایی که در سطح زیرزمینی قراردارند ترقی داده شدهاند. در RAS- A مجرای توزیع موقعیتش در امتداد محیط ساختمان با 3 انشعاب مجراهای نفوذی که در کنار دیوار با یک دیفیوزر در کنارهی ساختمان خاتمه پیدا میکند. یک دیوار نفوذی مجزا از واحد در RAS- B به یک توزیع چند برابر هدایت میکن بر روی یک دیوار کناری با یک سری دیفیوزرهای که سرعت پایین هوا را در ارتفاع کاری تولید میکنند.
در بعضی حالتها جایی که موقعیت اجازه میدهد واحدهای جابجایی هوا در صنایع سنگین ممکن است شامل یک سردکننده تبخیر کننده برای موقعیتهای تابستان باشد.
در صنایع با تکنولوژی بالا و در تحقیقات و آزمایشگاههای ساده جایی که سیستمهای صحیح HVAC تجهیزات انتخابی را بر پایهی ASHRAE 2000 مشخص میکنند.
همانطور که در بالا اشاره شد یک تنوعی از گرمکنندهها، تهویهها و سیستمهای HVAC در ASHRAE 2000 توصیف شده است که میتواند به عنوان واحدهای جابجا کنندهی هوا استفاده شود. این سیستمهای پکیجشده قابل دسترس هستند برای: 1- برای استفاده با آب گرم یا بخار 2- به عنوان سیستمهای غیر مستقیم سوخته شده بوسیلهی گاز یا روغن با منفذی از تولیدات احتراق در خارج 3- به عنوان واحدهای مستقیم سوزاندن گاز ازنوع استفاده شده در مثال کارخانهی ذوب فلز که در این فصل آشنا شدید.
| دسته بندی | فیزیک |
| بازدید ها | 1 |
| فرمت فایل | doc |
| حجم فایل | 566 کیلو بایت |
| تعداد صفحات فایل | 115 |
اصطلاح ( سیاهچال ) در همین اواخر قدم به صحنه علم گذاشته است و آنرا در سال 1969 دانشمندی آمریکایی بنام جان ویلر بعنوان نموداری از نظریه ای برگزید که دستکم به دویست سال پیش برمی گشت، یعنی زمانی که برای نور دو نظریه وجود داشت، یکی نیوتونی که آن را مرکب از ذرات می دانست و دیگری نظریه ای که نور را ساخته و پرداخته امواج می شناخت و ما اکنون به صحت هر دو نظریه وقوفی واقعی داریم. بر طبق دوگانگی موجی - ذره ای در مکانیک کوانتوم نور می تواند هر دو خصیصه را داشته باشد یعنی همسان یک موج و همراز یک ذره.
نظریه ذره ای بودن نور چگونگی پاسخ به نیروی جادبه را روشن نکرده بود و نظریه بودن آن هم انتظار پیروانش را در متأثر شدن نور از نیروی جاذبه به همان طریق که گلوله های توپ راکتها و سیارات از آن برخوردار می شدند برنیاورده بود. در آغاز مردم گمان می کردند که ذرات نور با سرعتی چنان نامتناهی سیر و سفر می کنند که نیروی جاذبه به گردشان هم نمی رسد تا از سرعت آنها بکاهد لیکن اکتشافات رومر مشعر بر متناهی بودن سرعت نور معنایش این بود که نیروی گرانش باید واجد اثری مهم باشد.
بر پایه این فرض یک عضو برجسته کمبریج بنام جان میچل در سال 1783 در مکتوبی مندرج در خلاصه مذکرات مجمع سلطنتی لندن خاطر نشان ساخته بود که اگر ستاره ای به قدر کفایت سنگین و متراکم باشد میدان جاذبه آن به قدری توانمند است که نور در آن به تله افتاده و راهی برای رهایی ندارد. یعنی : هر نوری که از سطح آن ستاره ساطع شود پیش از آن که خیلی از آن دور شود در دام جاذبه گرانشی آن ستاره افتاده و به پایین کشیده می شود.
جان میچل بر این باور بود که باید ستاره های بسیاری نظیر این ستاره وجود داشته باشند. با وجودی که چون نور این ستاره به ما نمی رسند که قادر به دیدن آنها نیستیم اما جاذبه گرانشی آنها را حس می کنیم. چنین اعجوبه هایی همانها هستند که ما اکنون آنها را سیاهچال می نامیم. و این اسمی است با مسمی، یعنی خلوتگاه های سیاه در فضای بی انتها.
چند سال بعد اظهار عقیده ای مشابه و ظاهراً مستقل از جان میچل از طرف مارکی دولاپلاس عنوان شد. جالب توجه این است که لاپاس این موضوع را فقط در چاپ اول و دوم کتاب خود مرسوم به منظومه جهانی درج کرد ودر چاپ های بعدی از آن صرفنظر کرد. شاید به دلیل این که او بر سست بودن این نظریه فتوا داده بود. (همچنین نظریه ذره ای بودن نور هم در طول مدت سده نوزدهم از چشم افتاده و به نظر می رسید که هر چیز را می توان با نظریه موجی بودن نور توجیه کرد و به هیچ وجه معلوم نبود که نور از نیروی گرانش متأثر باشد).
در حقیقت رفتاری همانند آنچه که در مورد گلوله توپ در نظریه گرانشی نیوتن انجام می گرفت با مزاج نور سازگاری نداشت زیرا سرعت نور ثابت بود. در صورتی که پرتاب یک گلوله توپ به سمت بالا سرعت گلوله در اثر نیروی جاذبه تدریجاً کاستی گرفته و سرانجام آن گلوله متوقف و به زمین برمی گردد و حال آنکه یک فوتون با سرعت ثابت همواره به حرکت خود به سمت بالا ادامه می دهد. ( پس جاذبه نیوتنی چگونه می تواند بر نور موثر باشد؟) از آن به بعد نظریه ای سازگار مشعر بر چگونگی اثر نیروی جاذبه بر نور ارائه نشد تا اینکه در سال 1915 انیشتین نظریه نسبیت را مطرح ساخت و حتی پس از آن هم مدت ها طول کشید تا اشارات این نظریه در مورد ستارگان جسیم به تفهیم درآمد.
| دسته بندی | فیزیک |
| بازدید ها | 2 |
| فرمت فایل | doc |
| حجم فایل | 44 کیلو بایت |
| تعداد صفحات فایل | 44 |
سیاره به جسمی فضایی با جرم بسیار زیاد گفته میشود که گرد یک ستاره در گردش باشد و خود نیز ستاره نباشد.
بنا بر تعریف ۲۴ اوت ۲۰۰۶ (میلادی) اتحادیه بینالمللی اخترشناسی سیاره در منظومه خورشیدی جرمیست که:
۱- در مداری به دور خورشید در حرکت باشد.
۲- آن قدر جرم داشته باشد که گرانش خودش بر نیروهای پیوستگی جسم صلب آن غلبه کند .یعنی در تعادل هیدرواستاتیک باشد و شکلش نیز تقریباً مدور باشد.
۳- توانسته باشد که مدار خود را از اجرام اضافه بزداید.
جرمی که تنها سازگار با دو شرط اول باشد و یک قمر هم نباشد سیاره کوتوله تعریف شدهاست.
واژه
واژه سیاره در فارسی از عربی (به معنی «راهپیما») گرفته شده که ترجمه دقیقی است برای واژه πλανήτης (پلانِتِس) یونانی. در عربی به سیاره «کوکب» میگویند.
سیارهها
سیاره از ستاره کوچکتر است و از خود نوری نمیتاباند. بخاطر بزرگی سیارهها، نیروی گرانش (جاذبه) شکل آنها را بصورت کروی درآورده است. به اجرامی که گرد خود سیارهها میگردند سیاره نمیگویند بلکه آن دسته از اجرام، ماهک یا قمر نام دارند.
پیش از دهه ۱۹۹۰ میلادی تنها ۹ سیاره (و همگی در سامانه خورشیدی ما) شناخته شده بودند، ولی امروزه (در سال ۲۰۰۴) تعداد ۱۳۰ سیاره شناسایی شده است. همه سیارههای تازهیاب در بیرون از منظومه خورشیدی ما قرار دارند، از اینرو گاه به آنها برونسیاره نیز گفته میشود. سیارهها مقدار کمی انرژی از طریق همجوشی تولید میکنند، برخی هم هیچ انرژیای تولید نمیکنند. کره زمین نیز یک سیاره است.
سیارههای سامانه خورشیدی
هشت سیاره اصلی و برسمیتشناختهشده منظومه ما به ترتیب فاصله از خورشید بدین شرحند:
تیر
ناهید
زمین
بهرام
مشتری - اقمار مهم مشتری عبارتاند از: گانیمید- اروپا-یو- کالیستو- و نزدیکترین قمر به سطح آن آمالته آ است.
کیوان - میماس و تیتان. ولی مهمترین قمر آن تیتان است که حتی از عطارد بزرگتر است.
اورانوس
نپتون - هشت قمر دارد؛ دو قمر به نامهای تریتون و نرئیداز دیگرقمرها بزرگترند. اما نرئید از سطح سیاره بسیار دور است.
(اورانوس و نپتون چون در چند سدهٔ اخیر کشف شدهاند تنها نامهای اروپایی دارند.)
سیارههای کوتوله
پلوتون- قمر آن شارون است که بیشتر شبیه یک جفت برای سیاره است تا یک قمر.
سرس
۲۰۰۳ یوبی۳۱۳ (این اسم موقت است)
تیر (سیاره)
تیر(یا عطارد)، Mercury واژه لاتین که در مقابل نام یونانی هرمس است. خدائی که پیغام برنده برای خدایان دیگر بوده و به همین دلیل هرمس در اغلب تصاویر با صندلهای بالدار کشیده میشود. علاوه بر پیغامرسانی، او نگهدار بازرگانان و مسافران بود.
سیاره عطارد (سیاره تیر) نزدیکترین سیاره منظومه شمسی به خورشید است. به خاطر نزدیکی این سیاره به خورشید اگر در طرف رو به خورشید آن (بخشی که روز است) قرار بگیرید به راحتی در دمای ۴۶۵ سانتیگراد پخته خواهید شد و به علت حرکتی وضعی آرامش اگر در طرف شب آن قرار بگیرید آن قدر سرد خواهد شد که در دمای ۱۴۸- سانتیگراد به راحتی مرگ را بر اثر یخ بستن تجربه میکنید.
به خاطر دهانههای آتشفشانی و آبگیرها خیلی شبیه کرهماه است. دانشمندان فکر میکردند که فعالیتهای آن مانند کره ماه است. اما اکنون میدانیم که سیاره عطارد با کره ماه بسیار متفاوت است.
سیاره عطارد قمر ندارد. عطارد کوچکترین سیاره منظومه شمسی است و جو بسیار کوچکی دارد. بادهای خورشیدی به شدت به عطارد میدمند و این میرساند که تقریباً هیچ هوایی در آن وجود ندارد.
مشخصات سیاره عطارد
قطر به کیلومتر : ۴۸۷۸
فاصله از خورشید به کیلومتر : ۷۵۹۱۰۰۰۰
جرم بر حسب سانتیمتر بر گرم : ۴/۵
مدت زمان گردش به دور خود : ۵۹ روز
مدت زمان گردش به دور خورشید : ۸۸ روز
اتمسفر : ندارد
میانگین دما : روز:۴۲۷ شب:۱۸۰- (سانتیگراد)
قمر یا حلقه : ندارد
حالت (غالب) : جامد
| دسته بندی | فیزیک |
| بازدید ها | 2 |
| فرمت فایل | doc |
| حجم فایل | 171 کیلو بایت |
| تعداد صفحات فایل | 21 |
در بقایای تمدن سومری کتیبه هایی مربوط به ستاره شناسی یافت شده است که قدمت آنها به 25000 سال قبل از میلاد مسیح می رسد . در بقایای سنگی کتیبه های یافت شده ، تصاویری از گردش ماه به دور زمین وجود دارد . استادان ماوراءالطبیعه سومری خیلی زود دریافتند هر اتفاقی که برای انسان رخ می دهد یه نوعی به به ستارگان ارتباط دارد و در و.اقع ستارگان منشاء همه اتفاقات هستند . در سال 1920 یک دانشمند روسی بنام چیجفسکی مطالعات کاملی در این خصوص انجام داد و متوجه شد هر یازده سال یکبار انفجارهای عظیمی در خورشید رخ می دهد .
او با بررسی یک دوره هفتصد ساله دریافت ، همیشه همزمان با پدیده انفجار خورشیدی یک جنگ ، اغتشاش و یا نابسامانی در کره زمین اتفاق می افتد . محاسبات و مشاهدات او که یک دوره هفتصد ساله را پوشش می داد ، آنقدر علمی و دقیق بود که رد کردن نظریه او را دشوار ساخته بود . در واقع خورشید یک ارگانیسم زنده ، پویا و آتشین است . حالات خورشید هر لحظه تغییر می کند و زمانی که اندکی تغییر در حالات خورشید به وجود آید ، زمین نیز تحت تاثیر قرار می گیرد . بعدها یک فیزیکدان سویسی بنام پاراسلوس با مطالعات بیشتری در این زمینه به کشف جدیدی نایل آمد . او کشف کرد انسان زمانی بیمار می شود که هماهنگی بین او و چیدمانی از ستارگان که در زمان تولدش وجود داشته است از بین برود . قبل از پاراسلوس ، فیثاغورث اصل ارزشمند توازن سیاره ای را مطرح کرده بود .
او معتقد بود که هر ستاره یا سیاره ای از طریق حرکت و جابجایی در فضا ارتعاشات منحصر به فردی را تولید می کند . مجموع ارتعاشات اجرام آسمانی یک توازن موسیقیایی تولید می کند که توازن کیهانی نامیده می شود . در سال 1950 گئورگی گیاردی دانش جدیدی بنام شیمی کیهانی را به وجود آورد . او پس از انجام آزمایشات متعدد به روش علمی اثبات کرد کل جهان یک وحدت بنیادین و یک جسم یکپارچه است . یعنی هیچیک از اعضاء آن از هم منفک نیستند و به یکدیگر متصلل هستند . پس اگر قسمتی از این جسم دستخوش تغییر گردد کل جسم مرتعش می شود و همه بخش های آن تحت تاثیر قرار می گیرند . پس با به وجود آمدن تغییر در هر ستاره ای ، در هر فاصله از زمین که باشد ، ضربان ما دچار تغییر خواهد شد . وقتی خورشید در شرایط و موقعیت خاصی قرار می گیرد گردش خون ما نیز تحت تاثیر قرار خواهد گرفت . دکتر تاماتوی از ژاپن هم کشف کرد که شدت طوفان های اتمی خورشید بر ضخامت گلبولهای خون به خصوص در آقایان تاثیرات فراوان دارد . فرانک براون ، متفکر آمریکایی نیز می گوید : در لحظه تولد یک انسان ستارگان بسیاری در حال طلوع و غروب کردن هستند .
مجمع الکواکبی در حال صعود و مجمع الکواکبی در حال فرود هستند و انسان در چیدمانی مشخص از ستارگان به دنیا می آید . از تحقیقات های صورت گرفته نتیجه مهمی حاصل می شود ( با در نظر گرفتن اینکه کل حیات تحت تاثیر چیدمان ستارگان قرار دارند ، با کمی مطالعه عمیق تر می توان دریافت که هر انسانی نیز تحت تاثیر ستارگان است ) در زمینه تاثیر چیدمان ستارگان بر حیات انسان مطالعات زیادی انجام شده است . به عنوان مثال می دانیم که اقیانوس ها تحت تاثیر حالات ماه قرار می گیرند . حال اگر در نظر داشته باشیم که نسبت آب و نمک موجود در اقیانوس ها دقیقاً مشابه نسبت آب و نمک بدن انسان است آنگاه نتیجه خواهیم گرفت که آب بدن انسان نیز همانند اقیانوس ها تحت تاثیر نیروی ماه قرار می گیرد . همچنین تحقیقات نشان می دهد که با نزدیک شدن ماه به حالت بدر ( ماه کامل ) میزان جنون و دیوانگی نیز در دنیا افزایش می یابد . پروفسور براون تحقیق جالبی را انجام داده است . او نمودار تولد بسیاری از نظامیان ، پزشکان و متخصصین مشهور را جمع آوری کرده و با بررسی این نمودارها متوجه شد افرادی که تخصص های یکسانی دارند اکثراً تحت چیدمان مشابهی از ستارگان متولد شده اند .
| دسته بندی | مکانیک |
| بازدید ها | 3 |
| فرمت فایل | doc |
| حجم فایل | 384 کیلو بایت |
| تعداد صفحات فایل | 12 |
باید دانست که یخچالهای خانگی ، فریزر ، یخچالهای ویترینی و سایر وسایل سردکننده تراکمی ، ساختمان مشابه دارند، و سیستم کار آنها یکسان است. یک یخچال نسبت به بعضی از لوازم برقی خانگی ، چون سـماور برقی و بخاری برقی ، از جزئیات بیشتری برخوردار است. از اینرو اجزای تشکیل دهنده یخچال را به دو دسته مکانیکی و الکتریکی تقسیم میکنند.
اجزای مکانیکی یخچال
کمپرسور
کار کمپرسور ، ایجاد فشار و مکش جهت به حرکت در آوردن گاز در سیستم است. در داخل کمپرسور یک موتور الکتریکی تک فاز و یک مجموعه مکانیکی شامل سیستم سوپاپ و پیستون و میللنگ قرار دارد. با رسیدن برق به موتور کمپرسور و به چرخش درآمدن روتور آن توسط میللنگ ، پیستون به حرکت در آمده و سوپاپهای مختلف باز و بسته می شوند. در نتیجه گاز به گردش در میآید. کمپرسور تنها از طریق سرلوله به بیرون ارتباط دارد.
صرفنظر از لوله کور که جز در موارد تخلیه یا شارژ گاز مورد استفاده قرار نمیگیرد، دو لوله دیگر از اهمیت بسزایی برخور دارند. حرکت پیستون داخل سیلندر کمپرسور مرتبا گاز را از لوله برگشت مکیده و با فشار وارد لوله رفت میکند. به این ترتیب گاز سرما ساز مدام در حال حرکت است و عمل سرماسازی را انجام میدهد.
رادیاتور خنک کننده (کندانسور
گاز سرد کننده وقتی در داخل کمپرسور تحت فشار قرار گیرد، حرارت آن افزایش مییابد. حال اگر به طریقی این گرما سلب نشود و یا تعدیل نگردد، عمل سرماسازی مختل میشود. از این رو در یخچال ، گاز تحت فشار و گرم شده از کمپرسور وارد لولههای مارپیچ مانند که در تماس مستقیم هوا است (جای این لوله ها در یخچال های خانگی پشت کابینت اصلی یخچال است) میشوند. دمای گاز در اثر ارتباط هوا کاهش یافته و عمل سرماسازی در سیستم به سهولت انجام میشود. به منظور حفاظت لولههای فلزی کندانسور در برخورد با اشیا و اجسام خارجی ، مفتولی در اطراف کندانسور تعبیه میکنند.
فیلتر (درایر)
گاز پس از آنکه در داخل کمپرسور تحت فشار قرار گرفت، به منظور کاستن از حرارتش راهی کندانسور میشود. از آنجا که ممکن است در عبور از این مسیر جرم هایی را نیز حمل کند و یا دارای رطوبت باشد، لازم است قبل از سرماسازی کاملا پاک و خشک شود. بنابراین پس از رادیاتور ، از فیلتر عبور میکند. فیلتر دارای دو لوله ارتباطی است.
یکی از لولهها سطح مقطع بزرگتری دارد که در واقع ورودی فیلتر است و به خروجی کندانسور وصل میشود. در ورودی فیلتر شبکههای توری ریزی برای گرفتن جرمهای زائد قرار گرفته است. خروجی فیلتر که سطح مقطع کمتری دارد به لوله مویین متصل میشود، تا گاز سرد کننده تحت فشار زیاد قرار گیرد. در این خروجی نیز شبکههای توری با سوراخهای بسیار ریز قرار گرفته است. در فضای میانی فیلتر مواد شیمیایی به نام سیلیکات یا سیلیکاژل قرار دارد، که خاصیت و کار آن جذب رطوبت گاز عبوری است.
لوله مویین (کاپیلاری تیوب)
لوله مویین ، لولهای با قطر بسیار کم است که به علت باریک بودن به این نام خواننده میشود و نقش مهمی در تولید سرما دارد. محل نصب لوله مویین بین خروجی فیلتر وورودی با اواپراتور (یخ ساز) است. گاز سرد کننده که توسط کمپرسور تحت فشار قرار گرفته با عبور از مسیر کندانسور و فیلتر وارد لوله مویین میشود. در لوله مویین فشار محیط درون آن به حد قابل توجهی افزایش مییابد. لذا گاز سرد کننده که تحت فشار زیاد به مایع تبدیل شده است، با عبور از لوله مویین وقتی که وارد اپراتور میشود، چون ناگهان با حجم زیادی مواجه میگردد، تبدیل به گاز شده و ایجاد سرما مینماید.
اواپراتور (محفظه یخ ساز)
اواپراتور به قسمتی گفته میشود که بوسیله تبخیر یک ماده خنککننده سبب تولید سرما شده و در صورت قرار گرفتن در یک ناحیه باعث سرد شدن آن ناحیه یا محفظه میشود. در وسایل سردکننده همان محفظه سردکننده را به نام اواپراتور میشناسند. برای انتقال مطلوب و سریع سرما جنس اواپراتور را از آلومینیم انتخاب میکنند. لوله ورودی اپراتور بسیار باریک است که در واقع همان نقطه اتصال آن به لوله مویین است، و لوله خروجی آن سطح مقطع بیشتری دارد و به لوله برگشت کمپرسور میرسد.
موتور الکتریکی
همان گونه که قبلا در مبحث کمپرسور خواندید موتور الکتریکی با یک مجموعه مکانیکی کمپرسور یخچال را تشکیل می دهند.موتور الکتریکی از نوع آسنکدون بوده و دارای دو قطب و قسمتهای عمده آن عبارتند از :
| دسته بندی | فیزیک |
| بازدید ها | 2 |
| فرمت فایل | doc |
| حجم فایل | 386 کیلو بایت |
| تعداد صفحات فایل | 45 |
برحسب نظریه اتمی عنصر عبارت است از یک جسم خالص ساده که با روش های شیمیایی نمی توان آن را تفکیک کرد. از ترکیب عناصر با یکدیگر اجسام مرکب به وجود می آیند. تعداد عناصر شناخته شده در طبیعت حدود ۹۲ عنصر است.
هیدروژن اولین و ساده ترین عنصر و پس از آن هلیم، کربن، ازت، اکسیژن و... فلزات روی، مس، آهن، نیکل و... و بالاخره آخرین عنصر طبیعی به شماره ۹۲، عنصر اورانیوم است. بشر توانسته است به طور مصنوعی و به کمک واکنش های هسته ای در راکتورهای اتمی و یا به کمک شتاب دهنده های قوی بیش از ۲۰ عنصر دیگر بسازد که تمام آن ها ناپایدارند و عمر کوتاه دارند و به سرعت با انتشار پرتوهایی تخریب می شوند. اتم های یک عنصر از اجتماع ذرات بنیادی به نام پرتون، نوترون و الکترون تشکیل یافته اند. پروتون بار مثبت و الکترون بار منفی و نوترون فاقد بار است.
تعداد پروتون ها نام و محل قرار گرفتن عنصر را در جدول تناوبی (جدول مندلیف مشخص می کند. اتم هیدروژن یک پروتون دارد و در خانه شماره ۱ جدول و اتم هلیم در خانه شماره ۲ ، اتم سدیم در خانه شماره ۱۱ و... و اتم اورانیوم در خانه شماره ۹۲ قرار دارد. یعنی دارای ۹۲ پروتون است .
ایزوتوپ های اورانیوم
تعداد نوترون ها در اتم های مختلف یک عنصر همواره یکسان نیست که برای مشخص کردن آنها از کلمه ایزوتوپ استفاده می شود. بنابراین اتم های مختلف یک عنصر را ایزوتوپ می گویند . مثلاً عنصر هیدروژن سه ایزوتوپ دارد: هیدروژن معمولی که فقط یک پروتون دارد و فاقد نوترون است. هیدروژن سنگین یک پروتون و یک نوترون دارد که به آن دوتریم گویند و نهایتاً تریتیم که از دو نوترون و یک پروتون تشکیل شده و ناپایدار است و طی زمان تجزیه می شود .
ایزوتوپ سنگین هیدروژن یعنی دوتریم در نیروگاه های اتمی کاربرد دارد و از الکترولیز آب به دست می آید. در جنگ دوم جهانی آلمانی ها برای ساختن نیروگاه اتمی و تهیه بمب اتمی در سوئد و نروژ مقادیر بسیار زیادی آب سنگین تهیه کرده بودند که انگلیسی ها متوجه منظور آلمانی ها شده و مخازن و دستگاه های الکترولیز آنها را نابود کردند .
غالب عناصر ایزوتوپ دارند از آن جمله عنصر اورانیوم، چهار ایزوتوپ دارد که فقط دو ایزوتوپ آن به علت داشتن نیمه عمر نسبتاً بالا در طبیعت و در سنگ معدن یافت می شوند. این دو ایزوتوپ عبارتند از اورانیوم ۲۳۵ و اورانیوم ۲۳۸ که در هر دو ۹۲ پروتون وجود دارد ولی اولی ۱۴۳ و دومی ۱۴۶ نوترون دارد. اختلاف این دو فقط وجود ۳ نوترون اضافی در ایزوتوپ سنگین است ولی از نظر خواص شیمیایی این دو ایزوتوپ کاملاً یکسان هستند و برای جداسازی آنها از یکدیگر حتماً باید از خواص فیزیکی آنها یعنی اختلاف جرم ایزوتوپ ها استفاده کرد. ایزوتوپ اورانیوم ۲۳۵ شکست پذیر است و در نیروگاه های اتمی از این خاصیت استفاده می شود و حرارت ایجاد شده در اثر این شکست را تبدیل به انرژی الکتریکی می نمایند. در واقع ورود یک نوترون به درون هسته این اتم سبب شکست آن شده و به ازای هر اتم شکسته شده ۲۰۰ میلیون الکترون ولت انرژی و دو تکه شکست و تعدادی نوترون حاصل می شود که می توانند اتم های دیگر را بشکنند. بنابراین در برخی از نیروگاه ها ترجیح می دهند تا حدی این ایزوتوپ را در مخلوط طبیعی دو ایزوتوپ غنی کنند و بدین ترتیب مسئله غنی سازی اورانیوم مطرح می شود .
ساختار نیروگاه اتمی
به طور خلاصه چگونگی کارکرد نیروگاه های اتمی را بیان کرده و ساختمان درونی آنها را مورد بررسی قرار می دهیم .
طی سال های گذشته اغلب کشورها به استفاده از این نوع انرژی هسته ای تمایل داشتند و حتی دولت ایران ۱۵ نیروگاه اتمی به کشورهای آمریکا، فرانسه و آلمان سفارش داده بود. ولی خوشبختانه بعد از وقوع دو حادثه مهم تری میل آیلند (Three Mile Island) در ۲۸ مارس ۱۹۷۹ و فاجعه چرنوبیل (Tchernobyl) در روسیه در ۲۶ آوریل ۱۹۸۶ ، نظر افکار عمومی نسبت به کاربرد اتم برای تولید انرژی تغییر کرد و ترس و وحشت از جنگ اتمی و به خصوص امکان تهیه بمب اتمی در جهان سوم، کشورهای غربی را موقتاً مجبور به تجدیدنظر در برنامه های اتمی خود کرد .
نیروگاه اتمی در واقع یک بمب اتمی است که به کمک میله های مهارکننده و خروج دمای درونی به وسیله مواد خنک کننده مثل آب و گاز، تحت کنترل درآمده است. اگر روزی این میله ها و یا پمپ های انتقال دهنده مواد خنک کننده وظیفه خود را درست انجام ندهند، سوانح متعددی به وجود می آید و حتی ممکن است نیروگاه نیز منفجر شود، مانند فاجعه نیروگاه چرنوبیل شوروی. یک نیروگاه اتمی متشکل از مواد مختلفی است که همه آنها نقش اساسی و مهم در تعادل و ادامه حیات آن را دارند. این مواد عبارت اند از :
1- ماده سوخت متشکل از اورانیوم طبیعی، اورانیوم غنی شده، اورانیوم و پلوتونیم است .
عمل سوختن اورانیوم در داخل نیروگاه اتمی متفاوت از سوختن زغال یا هر نوع سوخت فسیلی دیگر است. در این پدیده با ورود یک نوترون کم انرژی به داخل هسته ایزوتوپ اورانیوم ۲۳۵ عمل شکست انجام می گیرد و انرژی فراوانی تولید می کند. بعد از ورود نوترون به درون هسته اتم، ناپایداری در هسته به وجود آمده و بعد از لحظه بسیار کوتاهی هسته اتم شکسته شده و تبدیل به دوتکه شکست و تعدادی نوترون می شود. تعداد متوسط نوترون ها به ازای هر ۱۰۰ اتم شکسته شده ۲۴۷ عدد است و این نوترون ها اتم های دیگر را می شکنند و اگر کنترلی در مهار کردن تعداد آنها نباشد واکنش شکست در داخل توده اورانیوم به صورت زنجیره ای انجام می شود که در زمانی بسیار کوتاه منجر به انفجار شدیدی خواهد شد .
به طور خلاصه چگونگی کارکرد نیروگاه های اتمی را بیان کرده و ساختمان درونی آنها را مورد بررسی قرار می دهیم .
| دسته بندی | فیزیک |
| بازدید ها | 5 |
| فرمت فایل | doc |
| حجم فایل | 166 کیلو بایت |
| تعداد صفحات فایل | 30 |
دیود های زنر یا شکست ، دیود های نیمه هادی با پیوند p-n هستند که در ناحیه بایاس معکوس کار کرده و دارای کاربردهای زیادی در الکترونیک ، مخصوصآ به عنوان ولتاژ مبنا و یا تثبیت کننده ی ولتاژ دارند.
هنگامیکه پتانسیل الکتریکی دو سر دیود را در جهت معکوس افزایش دهیم در ولتاژ خاصی پدیده شکست اتفاق می افتد، بد ین معنی که با افزایش بیشتر ولتاژ ، جریان بطور سریع و ناگهانی افزایش خواهد داشت. دیود های زنر یا شکست دیود هایی هستند که در این ناحیه یعنی ناحیه شکست کار میکنند و ظرفیت حرارتی آنها طوری است که قادر به تحمل محدود جریانمعینی در حالت شکست می باشند، برای توجیه فیزیکی پدیده شکست دو نوع مکانیسم وجود دارد.
مکانیسم اول در ولتاژهای کمتر از 6 ولت برای دیودهایی که غلظت حامل ها در آن زیاد است اتفاق می افتد و به پدیده شکست زنر مشهور است. در این نوع دیود ها به علت زیاد بودن غلظت ناخالصی ها در دو قسمت p و n ، عرض منطقه ی بار فضای پیوند باریک بوده و در نتیجه با قرار دادن یک اختلاف پتانسیل v بر روی دیود (پتانسیل معکوس) ، میدان الکتریکی زیادی در منطقه ی پیوند ایجاد می شود.
با افزایش پتانسیل v به حدی می رسیمکه نیروی حاصل از میدان الکتریکی ، یکی از پیوند های کووالانسی را می شکند. با افزایش بیشتر پتانسیل دو سر دیود از انجایی که انرژی یا نیروهای پیوند کووالانسی باند ظرفیت در کریستال نیمه هادی تقریبأ مساوی صفر است ، پتانسیل تغییر چندانی نکرده ، بلکه تعداد بیشتری از پیوندهای ظرفیتی شکسته شده و جریان دیود افزایش می یابد.
آزمایش نشان میدهد که ضریب حرارتی ولتاژ شکست برای این نوع دیود منفی است ، یعنی با افزایش درجه حرارت ولتاژ شکست کاهش می یا بد. بنابر این دیود با ولتاژ کمتری به حالت شکست می رود (انرژی باند غدغن برای سیلیکن و ژرمانیم در درجه حرارت صفر مطلق بترتیب 1.21 و0.785 الکترون_ولت است، و در درجه حرارت 300 درجه کلوین این انرژی برای سیلیکن ev 1.1و برای ژرمانیم ev0.72 خواهد بود). ثابت می شود که می دان الکتریکی لازم برای ایجاد پدیده زنر در حدود 2*10است.
این مقدار برای دیود هایی که در آنها غلظت حامل ها خیلی زیاد است در ولتاژهای کمتر از 6 ولت ایجاد می شود . برای دیودهایی که دارای غلظت حاملهای کمتری هستند ولتاژ شکست زنر بالاتر بوده و پدیده ی دیگری بنام شکست بهمنی در آنها اتفاق می افتد (قبل از شکست زنر) که ذیلأ به بررسی آن می پردازیم.
| دسته بندی | عمران |
| بازدید ها | 6 |
| فرمت فایل | ppt |
| حجم فایل | 7023 کیلو بایت |
| تعداد صفحات فایل | 25 |
در این پروژه پاورپوینت انواع غلتک و کاربردهای آن در 25 اسلاید کاربردی و کاملا قابل ویرایش طبق موارد زیر ارایه شده است:
1- مقدمه
2- میزان دانسیته
3- تراکم
4- انواع غلتک ها
الف -غلتکهای پاچه بزی TAMPING FOOT ROLLERS
ب - غلتکهای شبکه ای GRID MESH ROLLERS
ج - غلتکهای ارتعاشی VIBRATORY MESH ROLLERS
د -غلتکهای فولادی صاف SMOOTH STEEL DRUM
ه - غلتکهای پنوماتیک PNEUMATIC ROLLERS
ی -غلتکهای کفشک دار SEGMENTED PAD ROLLERS
و -بولدوزرهای متراکم کننده SOIL COMPACTORS
5- ماشین آلات آسفالت کاری
| دسته بندی | فیزیک |
| بازدید ها | 7 |
| فرمت فایل | doc |
| حجم فایل | 35 کیلو بایت |
| تعداد صفحات فایل | 11 |
فهرست مطالب
عنوان صفحه
مقدمه 1 تا 4
بخش نخست کلیات و تاریخ تحول تعارض قوانین 5
فصل یکم. احوال شخصیه – مبحث 1 – کلیات 6
گفتار یکم :مفهوم احوال شخصیه و قانون حاکم بر آن
الف – مفهوم احوال شخصیه 6
ب – قانون حاکم بر احوال شخصیه 10
فصل دوم
تعیین تابعیت و اقامتگاه از دیدگاه تعارض قوانین 21
مقدمه 22
اول – تابعیت واقامتگاه به عنوان دو عامل ارتباط
قانون حاکم بر تبیین تابعیت و اقامتگاه 32
گفتار اول قانون حاکم بر تبعیت تابعیت 34
2-1 قلمرو اعمال قانون دادگاه مجمع رسیدگی 35
2-2 قلمرو اعمال قانون خارجی یا قانون سببیت 37
گفتار دوم
قانون حاکم بر تبیین اقامتگاه 39
1-1 قلمرو اعمال قانون دادگاه مرجع رسیدگی40
2-2 قلمرو اعمال قانون خارجی یا قانون سبب42
چکیده :
رفتار مواد تحت سیکلهای کنترل شدة توسط تنش محوری با تنش متوسط کشی در منطقه پلاستیکی توسط یک خزش سیکلی انطباقی و روند پروسههایی خستگی تعیین میشود. خزش سیکلی ممکن است بر روند تخریب احاطه داشتند و باعث شکست تخریبی پیش از شروع ترک – شکست شود. هدف این پروژه بررسی خزش سیکلی در مسن تحت چنین شرایط بارگذاری در دماهای اتاق، و بدست آوردن ارتباطی تجربی برای خزش سیکلی به شکل بررسی فشار تحمیلی و فشار متوسط است. از طریق تابع فشار متوسط تعریفی پیشنهادی قبلی که مسئول اثر فشار متوسط بر رفتار سیکلی است. دریافتهایم که رفتارخزش سیکلی در دماهای اتاق را میتوان با ارتباط قدرت – قانون که مشابه خزش استاتیک در دماهای بالا است، توضیح داد.
1- مقدمه
وقتی فلزات تحت سیکل فشار کنترل شدة تحمیل بر فشار متوسط کشی در منطقة پلاستیکی قرار میگیرند، جریان پلاستیک روی میدهد که در آن کرنش به وجود آمده (elapsed)، تعداد دوره افزایش مییابد. این پدیده را خزش سیکلی (یا ضامن) میشناسیم و ممکن است حتی در دماهای پائین نیز اتفاق افتد. (یا ضامن) روی دادن خزش سیکلی در چنین شرایط بارگذاریعلاوه بر تخریب در اثر خستگی است و دو روند دیگر نیز ممکن است به صورت مستقل یا مرتبط عمل کنند. شکست بر اثر تخریب فشار پلاستیک سیکلی منطقهای است و تأثیر کمی بر ابعاد این ترکیب دارد. از طرف دیگر، خزش سیکلی به دلیل فشار پلاستیکی ناخالص در هر دوره است و ممکن است باعث شکست اجزاء به دلیل تحریف بیش از حد (یعنی افزایش طول و کاهش منطقة متقاطع) پیش از شروع ترک شکست یا انکسار شود. در بسیاری کاربردها، تخریب خزش سیکلی ممکن است اهمیت زیادی در طراحی داشته باشد. برای مثال در تجهیزات الکترونیکی، جایی که اجزای مس هادی جریان هستند. به دلیل بارگذاری دورهای تحریف شده و باعث شکست بر اثر اتصال سیم برق (کوتاه) شود. بنابراین، برای مقاصد طراحی و یا پیش بینی عمر در چنین کاربردهائی، مهم است که رفتار مواد تشکیل دهندة خزش سیکلی درک و میزان خزش در شرایط بارگذاری تحمیلی تعیین شود. هر چند روشهای تجربی بسیاری، مثل Sw[2] , [1] Morrow برای تخمین عمر شکست دورة پایین است و ممکن است تا شکستهای تحریفی قبل از اینکه انکار شکست نهایی روی دهد افزایش یابد، بکار برد.
| دسته بندی | فیزیک |
| بازدید ها | 5 |
| فرمت فایل | doc |
| حجم فایل | 115 کیلو بایت |
| تعداد صفحات فایل | 50 |
برای بررسی حرکت یک جسم ابتدا به تعریف چند کمیت می پردازیم.
بردار مکان و بردار جابه جایی
بردار مکان موقعیت مکانی جسم را در صفحه مختصات نشان می دهد. ابتدای بردار مکان بعداً مختصات و انتهای آن نقطه ای است که جسم در آن واقع شده است.
فرض کنید که یک جسم متحرک در لحظه t1 در نقطه A باشد و در لحظه t2 به نقطه B رسیده باشد. بردار جابه جایی بین دو لحظه t1 و t2 برداری است که ابتدای آن مکان متحرک در لحظه t1 و انتهاب آن مکان متحرک در لحظه t2 باشد
Δr تفاضل r2 و r1 است یعنی r2-r1 = Δr
بردار جابه جاهایی به مسیر حرکت بستگی ندارد و فقط با داشتن دو نقطه (مکان جسم در لحظه t1 و مکان جسم در لحظه t2) رسم می شود.
حرکت روی خط راست
هر گاه راستای حرکت جسم متحرک، یک خط راست باشد در تمام لحظه ها بردار جابه جایی هایی متحرک بر همان راستا خواهد بود. مبدأ هم روی همین راستا انتخاب می شود در این صورت محاسبه بر روی این بردارها به سادگی انجام می گیرد.
نمودار مکان – زمان
این نمودار مکان جسم را در زمانهای مختلف نشان می دهد. غالباً محور افقی زمان و محور قائم مکان جسم را نشان می دهد. با استفاده از این نمودار می توان دریافت که متحرک در هر لحظه در چه مکانی قرار دارد و جابه جایی آن بین هر دو لحظه چقدر است.
سرعت متوسط و تعیین آن به کمک نمودار مکان – زمان
تغییر مکان یک جسم تقسیم بر تغییرات زمان را سرعت متوسط می گویند. سرعت متوسط به صورت v نشان داده می شود. سرعت متوسط کمیتی برداری است که با بردار جابه جایی هم جهت است. یکای سرعت متوسط متر بر ثانیه (m/s) می باشد
|
Δx Δt |
= |
|
V= |
||
|
|
|||||
نمودار مکان . زمان یک جسم متحرک نشان داده شده است. سرعت متوسط بین دو نقطه A وB مساوی است با Δx/Δt و در درس ریاضی دیده اید که Δx/Δt همان شیب خط AB است.
سرعت متوسط بین دو نقطه از نوار مکان – زمان برابر شیب خطی است که آن دو نقطه را به هم وصل می کند.
سرعت لحظه ای و تعیین آن به کمک نمودار مکان – زمان
سرعت لحظه ای، سرعت متوسط در هر لحظه از حرکت است. سرعت متوسط در حدی که با ذره ی زمانی Δt فوق العاده کوچک شود، سرعت لحظه ای نامیده می شود. یک بار دیگر نمودار مکان – زمان را در نظر بگیرید. اگر Δt فوق العاده کوچک شود نقطه B خیلی خیلی به A نزدیک می شود و در نهایت خط AB در نقطه A نمودار احساس می شود. سرعت در هر لحظه برابر شیب خط مماس بر نمودار مکان – زمان در آن لحظه است
انواع حرکت روی خط راست
| دسته بندی | فیزیک |
| بازدید ها | 3 |
| فرمت فایل | doc |
| حجم فایل | 34 کیلو بایت |
| تعداد صفحات فایل | 38 |
موضوع اصلی ارتعاش بررسی حرکت نوسانی «سیستمهای دینامیکی» می باشد. سیستم دینامیکی از «پاره های مادی» پیوسته که نسبت به هم قابلیت حرکت ارتجاعی دارند تشکیل می شود. تمام اجسامی که دارای جرم و خاصیت کشسانی باشند، می توانند ارتعاش کنند.
جرم جزء لاینفک جسم بوده و خاصیت کشسانی از حرکات نسبی قسمتهای پیوسته آن ناشی می شود. سیستم ارتعاشی ممکن است ساده و یا بسیار پیچیده باشد. به عنوان مثال یک سازه یک ماشین یا اجزای آن و یا مجموعه ای از ماشینآلات سیستم های ارتعاشی محسوب می شوند. حرکت نوسانی می تواند اثرات نامطلوب و یا جزئی ریوی سیستم داشته و یا اصلاً لازم برای انجام کاری باشد.
هدف طراح کنترول ارتعاشات است زمانی که مضر است و تشدید و کاربرد صحیح آن است وقتی که لازم و مفید می باشد. گرچه باید گفت که در اکثر موارد ارتعاشات مضر بوده و بایستی کنترول شود. ارتعاشات در ماشینها ممکن است باعث شل شدن از کارافتادن و یا گسیختگی در قطعات شود. از موارد کاربرد ارتعاشات می توان لرزاننده ها در ریخته گری، هرس دندانه میخی ارتعاشی، ردیف کن های علوفه، غربالهای کمباین و ... در کشاورزی را نام برد.
مقصود نهایی از مطالعه ارتعاشات، تعیین اثرات آن در کارکرد و همچنین ایمنی سیستم ها می باشد. تحلیل حرکات ارتعاشی، قدم اصلی است که به سوی این هدف برداشته می شود.
ارتعاش در حین حرکت تراکتورهای کشاورزی که فاقد فنر ارتجاعی می باشند سرعتهای مؤثر آنها را محدود می کند و باعث ناراحتی و بعضی اوقات آسیب رسیدن دراز مدت به رانندگان می گردد. با بکارگیری مدل مناسب و تحلیل ریاضی می توان اثرات ارتعاش در حین حرکت تراکتور در مرحله طراحی را تعدیل کرده و باعث بهتر شدن حرکت تراکتور گردیم.
بررسی مدل تراکتور در راستای طولی که توسط بسیاری از مولفین بکار رفته است عمدتاً در سطح ارتعاشی روندهای ساده ای را تخمین می زند. بررسی ارتعاش بدنه تراکتور و رابطه بین تایر و سطح زمین در حین حرکت کافی می باشد.
ارتعاشات چیستند و چگونه ایجاد می شوند؟
موضوع علم ارتعاش، بررسی «حرکات سیستم های دینامیکی» است. هر پاره فیزیکی که قابلیت کسب و از دست دادن انرژی پتانسیل (در اثر تغییر مکانهای نسبی) و همچنین انرژی جنبشی را دارا باشد سیستم دینامیکی گویند. از ویژگی های چنین سیستمی همانا قابلیت آن برای حرکات نوسانی است. یعنی اینکه اگر از حالت تعادل خارج شود، نیروی مربوط به انرژی پتانسیل میل به برگرداندن سیستم به حالت تعادل داشته و درنتیجه طبق قانون دوم نیوتن به جرم در این جهت شتاب خواهد داد. بدین سان جرم سرعت گرفته و دارای انرژی جنبشی می شود. این انرژی بنوبه خود پس از گذشتن جرم از موقعیت تعادل دوباره به انرژی پتانسیل تبدیل می شود و اگر عامل مستهلک کننده ای در سیستم موجود نمی بود این فرابرد (تبدیل انرژی ها) برای همیشه ادامه پیدا می کرد. لیکن خاصیت میرایی که در اثر اصطکاک حاصله از حرکات نسبی بین نقاط مختلف ظاهر می شود با در حالت و وترکیبی مختلف و گوناگون از مکانیسمهای مستهلک کننده، همواره در سیستمها موجود است و درنتیجه باعث می شود که سیستم بالاخره از حرکت باز ایستد. خاصیت میرایی ممکن است به میزانی برسد که دیگر حرکت نوسانی امکانپذیر نبوده و حرکت فقط به یک طرف از موقعیت تعادل محدود شود (حرکت آپریودیک – غیر پریودیک).
بنابراین پارامترهای یک سیستم دینامیکی عبارتند از: جرم، ثابت فنر و ثابت مستهلک کننده دیسکوز. از آنجا که این پارامترها در حالت عمومی پایا فرض می شوند آنها را اجزای غیر فعال (passive) گویند. حال آنکه عوامل ایجاد کننده ارتعاشات را که «نیرو» و یا «نیروهای خارجی» هستند، چون با زمان تغییر می کند فعال (active) نامند. این «نیروها» ممکن است به صورت پریودیک (مثال هارمونیک ساده) آپریودیک (مانند ضربه) و یا استوکوستیک (رندم یا شاسی) به سیستم وارد آیند. مطالعه ارتعاشات حاصله از عوامل فوق بترتیب مشکل تر می شود.
| دسته بندی | فیزیک |
| بازدید ها | 5 |
| فرمت فایل | doc |
| حجم فایل | 8112 کیلو بایت |
| تعداد صفحات فایل | 109 |
مقدمه
اگر وضعیت فعلی رشد جمعیت ادامه یابد، پیش بینی می شود جمعیت جهان در اوائل قرن حاضر به هفت میلیارد نفر می رسد .
در عین حال منابع انرژی متداول در حال اتمام بوده و ممکن است تا اوایل قرن ٢١ به پایان برسد . استفاده از انرژی هسته ای که منابع آن نیز محدود بوده ومستلزم تربیت نیروی انسانی ماهر و نیز استفاده از سیستم های پیشرفته حفاظتی در برابر ضایعات رادیواکتیو است ،کفایت انرژی جهان را نخواهد داد.
پیش بینی می شود که انرژی خورشیدی و انرژی بادی وغیره ، جایگاه ویژه ای رادرتامین انرژی قرن آتی کسب نمایند.
استفاده از انرژی در پیشرفت تمدن امری طبیعی و اساسی است و به عنوان یک پایه برای حیات مطرح می باشد. انرژی به عنوان یک عنصر اصلی برای هر فعالیت اقتصادی لازم است و چنانچه افزایش مصرف انرژی در راستای کمک به بالا رفتن مرتبه رشد اقتصادی که باعث ایجاد استانداردهای بالاتر زندگی و کیفیت بهتر زندگی برای جمعیت رو به رشد جهانی باشد، مفید بوده و هر کجا که استفاده از انرژی باعث محدود کردن رشد اقتصادی و کیفیت زندگی گردد، مضر محسوب می شود. به عبارت دیگر هنگامی که افزایش استفاده از انرژی همراه با محدودیت های اکوانرژی باشد رشد را محدود می کند زیرا در این حالت منابع طبیعی و رشد اقتصادی ناپایدار است.
مفهوم اکوانرژی در واقع از مباحث اقتصاد و محیط زیست ناشی می شود که سیستمهای مختلف انرژی را از جهات اقتصادی و محیط زیستی بررسی و مقایسه می کند. محدودیتهای اکوانرژی که در این جا بدان اشاره می گردد شامل محدودیتهای زیست محیطی که باعث پایین آمدن استانداردهای زندگی می شود، می باشد. محدودیتهای سیاسی که در واقع باعث بحرانهای منطقه ای می شوند نیز به عنوان زیرمجموعه ای از محدودیتهای اکوانرژی به حساب می آیند.
نیاز قرن بیست و یکم پایدار شدن است . این مفهوم پایداری شامل نرخ پایدار افزایش جمعیت، پایداری مصرف انرژی و اقتصاد پایدار می باشد.
توسعه پایدار با اقتصاد پایدار معنی می یابد و اقتصاد پایدار باید توسط سیستم های انرژی که بازده بیشتر و قیمت پایین تر دارند و همچنین پاکیزه هستند یعنی سیستمهای انرژی که اقتصادی تر و قابل رقابت تر با سایر انرژیها بوده و افراد بیشتری را به کار گرفته و باعث کاهش اثرات نامطلوب زیست محیطی میگردند، تأمین شود. در جهان امروز با نرخ افزایش جمعیت بالا، رشد اقتصاد پایدار فقط از طریق دسترسی به سیستم های انرژی که بتواند به محدودیت های سایر انرژیها فائق آید امکان پذیر است و نکته قابل توجه اینجاست که بشر در راه رسیدن به چنین هدفی است، اما نکته منفی پراکنده بودن فعالیت روی این موضوع و مقاومتهای سیاسی و اقتصادی بسیار زیاد در راه آسا ن سازی این گذر انرژی مفید جهانی است. گذر از یک انرژی به نوع دیگر آن همواره همراه با یک سابقه تاریخی و مفاهیم جدانشدنی ا قتصاد و محیط زیست قابل بررسی است . برای شناخت محدودیتهای سایر منابع انرژی لازم است تا دو مورد فوق الذکر در مورد آنها بررسی گردد.
اولین بار استفاده از انرژی با استفاده از چوب رونق گرفت و در ابتدا اقتصاد چوب پایدار به نظر می رسید چون منابع جنگلی فراوان بودند و جمعیت جهانی نیز نسبتاً کم بود . اما هنگامی که تکنولوژی پیشرفت نمود و درخواست انرژی برای صنعت ذوب آهن و سایر صنایع افزایش یافت، جنگلها رو به نابودی گذاشت و قیمت چوب افزایش یافت . در واقع رشد اقتصادی با توجه به عدم در دسترس بودن منابع و افزایش قیمت محدود گردید.
در این زمان بشر اندیشه دیگری در راستای تکنولوژی استفاده از انرژی با بازده بیشتر رابا ارائه زغال سنگ، ابداع نمود . این گذر انرژی باعث پیشرفت هایی شد . در این سالها لوکوموتیو و موتورهای جدیدی که بتوانند از این سوخت جدید استفاده نمایند ساخته شد . بنابراین در قرن 19 منبع انرژی دیگری که مؤثرتر از چوب بود معرفی گردید و باعث بوجود آمدن یک رشد اقتصادی که افراد بیشتری از آن بهره می بردند گردید . این پیشرفت به همراه بازده اقتصادی بیشتر، محصولات متنوع و نیروی کار بیشتر و قیمت پایین محصولات باعث بوجود آمدن انقلاب صنعتی گردید . پس از گذشت زمان، انقلاب صنعتی باعث پایین آمدن سطح کیفی زندگی عده زیادی از مردم گردید. محدودیتهای اکوانرژی زغال سنگ به شرح زیر مطرح شد:
با محدودیتهای فوق مفهوم پایداری اقتصاد زغال سنگ زیر سؤال رفت . بنابراین تکنولوژی جدید یکبار دیگر یک گذر انرژی را تجربه نمود و به سمت سوخت پیشرفته تر بعدی متوجه گردید و نفت به عنوان یک سوخت جدید به سمت اقتصادی شدن حرکت کرد.
نفت با %75 کربن، تمیزتر و قابل حمل تر بوده و بازده بیشتری نسبت به سوختهای قبلی داشت. بنابراین به تدریج جایگزین سوختهای قبلی گردید . بطور کلی استفاده از انرژی در سیستم های اقتصادی، در زیر ساخت ها و حتی رفتارهای روزمره افراد نفوذ می نماید و از این رو تغییر انرژی به کندی صورت می گیرد. اگر چه همیشه مزیت های اقتصادی بر مقاومتهای سیاسی غلبه پیدا می کند اما تغییر انرژی آخرین اقدامی است که شامل قانون فوق میشود.
در سالهای استفاده از نفت ماشین های حفاری، پالایشگاهها و موتورهای احتراق داخلی به عنوان بخشی از انقلاب نفت توسعه و کاربرد می یابند و یک بار دیگر یک گذر انرژی به سمت انرژی ارزانتر با بازده بیشتر که در آن کارآیی افراد بالاتر بوده و قیمت خدمات را می کاهد و جمعیت جهان را به سمت یک منبع اقتصادی جدید که کیفیت زندگی را ارتقاء می دهد، سوق می دهد.
در حالی که از نفت به عنوان انرژی جدید استفاده می گردد، سیر تحقیقات برای گذر از سیستم های انرژی آلوده ساز و مشکل سازتر به سمت سوختهای پاک تر که از نظر شیمیایی ساده تر و از نظر اقتصادی پایدارتر باشند ادامه می یابد.
پیل سوختی وسیله ای است که با استفاده از یک واکنش شیمیایی، برق تولید می کند. هر پیل سوختی دو الکترود دارد، یکی مثبت و دیگری منفی که به ترتیب کاتد و آند نامیده می شوند. واکنش هایی که برق تولید می کنند در الکترودها رخ می دهند. هر پیل سوختی همچنین دارای یک الکترولیت است که ذرات شارژ شده الکتریکی را از یک الکترود به الکترود دیگر می برد و کاتالیزور که سرعت واکنش در الکترودهاراافزایش می دهد. هیدروژن سوخت پایه است، اما پیل های سوختی به اکسیژن هم نیاز دارند. یکی از جاذبه های پیلهای سوختی این است که با ایجاد آلودگی ناچیز برق تولید می کنند. بیشتر هیدروژن و اکسیژنی که در تولید برق به کار می روند نهایتاً باعث ایجاد محصولی جانبی به نام آب می شوند. یک پیل سوختی تنها مقدار بسیار کمی جریان مستقیم تولید می کند. در عمل، تعداد زیادی از پیل های سوختی با هم به صورت یک توده در می آیند. پیل یا توده، دارای اصولی یکسان هستند.
| دسته بندی | فیزیک |
| بازدید ها | 4 |
| فرمت فایل | doc |
| حجم فایل | 42 کیلو بایت |
| تعداد صفحات فایل | 47 |
چکیده: این مقاله در دو روش جدید برای مکان بهینه تولید پراکنده در یک بخش ار بهینه (opf) را نمایش می دهد که برپایه بازار عمده فروشی الکتریسیته است تولید پراکنده فرض می شود که در بازار عمده فروشی الکتریسیته ،زمان واقعی شرکت می کند مسئله مقدار و مکان بهینه برای دو هدف متفاوت فرمول بندی می شود با نام ماکزیموم سازی رفاه اجتماعی و ماکزیموم سازی شود محل های کاندید برای مکان تولید پراکنده بر پایه قیمت حدی محلی (lmp) مشخص می شود مطابق با ضرایب لاکرانژ مربوط به معادله پخش توان اکتیو برای هر گروه lmp هزینه حدی کوتاه مدت (srmc) الکتریسیته مشخص می شود مقدار پرداخت مصرف کننده به عنوان یک محصول و نتیجه lmp ارزیابی می شود و مقدار و بار در هر باس بار به عنوان دیگر رتبه بندی برای تعیین گره ای کاندید برای مکان تولید پراکنده ارائه شده است رتبه بندی ارائه شده جنبه های مهندسی سیستم عملی را و جنبه های اقتصادی بازار عملی را به هم مرتبط می کند و به عنوان شاخص های خوبی برای مکان تولید پراکنده به طور خاص در یک بازار تولیدی عمل می کند به منظور ایجاد یک سناریو متفاوت از تولید های پراکنده در دسترسی بازار چندین مشخصه هزینه در نظر گرفته می شود برای هر مشخصه هزینه تولید پراکنده یک مکان و مقدار بهینه برای هر هدف مشخص می شود روش ارائه شده روی سیستم تست 14 با سه IEEE اصلاح شده تست شده است
مقدمه:تولیدهای پراکنده به عنوان تولید کننده های توان کوچک در نظر گرفته می شوند که با ایجاد ظرفیت اضافی برای سیستم قدرت مکمل ایستگاههای توان مرکزی هستنداگر چه تولیدهای پراکنده هرگز جایگزین ایستگاههای توان مرکزی نمی شوند با این حال اینها میتوانند انتخاب مطلوب باشند هنگامیکه قیود شبکه انتقال مانع اقتصادی شدن یا کمترین گرانی مبلغ انرژی که می رسد به دست متقاضی می شود باشد اگر چه نفوذ و امکان پذیری یک تولید پراکنده در یک محل خاص توسط تکنولوژی همانند فاکتورهای اقتصادی تحت تاثیر قرار داده می شود شایستگی و ایاقت تکنولوژی پیاده سازی تولید پراکنده باعث پشتیبانی ولتاژ ، کاهش تلفات انرژیث ، ازاد سازی ظرفیت سیستم و توسعه قابلیت اطمینان سیستم می شود (1) همچنین نفوذ اقتصادی باعث حصاری در مقابل افزایش قیمت الکتریسیته می شود این عامل با دسته شدن عمودی نهادها و مانیسم های بازار همانند قیمت گذاری زمان واقعی تقویت می شود با تغذیه بارها و در طی دورهای زمانی یک بار که هزینه الکتریسیته بالا است تولید پراکنده به عنوان یک مکانیسم مصونیت قیمیت ، می تواند بهترین سرویس دهی را داشته باشد تولید پراکنده می تواند دارای یک مقدار بزرگی باشد در یک منطقه با ازدحام بالا که lmp بیشتر از هر جای دیگری است در چنین موقعیتی آن می تواند به بارهای محل سرویس دهی کند و به طور موثری بار شبکه را کاهش دهد مکان تولید پراکنده با این حال باید با در نظر گرفتن مقدار و محلش انجام شود ماکن به منظور ماکزیموم سازی سود تولید پراکنده پیاده سازی شود در شبکه باید بهینه باشد مکان نادرست در بعضی موقعیت ها می تواند مزایا را کاهش دهد وحتی عملکرد سیستم را به خطر اندازد مطالعه حاضر شامل مکان تولید پراکنده در pool است که بر پایه بازار عمده فروشی الکتریسیته توزیع متمرکز است
| دسته بندی | فیزیک |
| بازدید ها | 5 |
| فرمت فایل | doc |
| حجم فایل | 210 کیلو بایت |
| تعداد صفحات فایل | 25 |
تشریح قوانین ترمودینامیک
مطالعه ترمودینامیک را مهندسین قرن نوزدهم آغاز کردند؛ آنها می خواستند بدانند قوانین فیزیک چه محدودیت هایی بر عملکرد ماشین های بخار و سایر ماشین های تولید کننده انرژی مکانیکی تحمیل می کنند. ترمودینامیک درباره تبدیل یک شکل انرژی به شکلی دیگر، به ویژه تبدیل گرما به سایر شکلهای انرژی بحث می کند. این کار با مطالعه روابط بین پارامترهای صرفا ماکروسکوپی صورت می گیرد که رفتار سیستمهای فیزیکی را توصیف می کنند. این گونه توصیف ماکروسکوپی (و در مقیاس بزرگ)، لزوما تا حدی خام است، چرا که همه جزئیات کوچک مقیاس و میکروسکوپی را نادیده می گیرد. اما در کاربردهای عملی، این جزئیات اغلب مهم نیستند. برای مثال، مهندسی که رفتارهای گازهای حاصل از احتراق را در سیلندر یک موتور اتومبیل بررسی می کند می تواند با کمیتهای ماکروسکوپی همچون دما، فشار، چگالی و ظرفیت حرارتی کار خود را پیش ببرد.
موتور درونسوز برای تبدیل یک نوع انرژی به نوعی دیگر ساخته شده است.
در واقع دانشمندان به دنبال یافتن پاسخ این پرسش بودند که آیا می توان ماشینی ساخت که به طور دائمی کار مکانیکی انجام دهد. آنها مدتها بر روی این موضوع تحقیق کردند و تعدادی از محققین نیز طرحهایی برای این کار پیشنهاد نمودند. شکل های زیر نوع از این طرحها را نشان می دهد.
این طرحها محدودیتهای قوانین ترمودینامیک را رعایت نمی کردند.
در این طرحها بدون انجام دادن کار انرژی گرفته می شد.
هدف این بود که ابزار ساخته شده بدون مصرف هیچ گونه سوخت یا هر گونه انرژی ورودی دیگر، کار خروجی بی پایانی را تامین کند. در شکل میله های کوتاه لولا شده، که به میخ ها تکیه دارند، وزنه ها را به چرخ متصل می کنند. وقتی میله ها در وضعیت نشان داده شده هستند، عدم توازنی در توزیع وزن وجود دارد که موجب ایجاد یک گشتاور ساعتگرد خواهد شد که چرخ را در جهت نشان داده شده می چرخاند. طراح می پنداشت این گشتاور همیشگی است و نه تنها چرخش چرخ را حفظ می کند، بلکه به طور دائمی به محور آن انرژی می دهد. اما آنچه در عمل اتفاق می افتد اینست که پس از یک دور چرخیدن، جرم ها در یک وضعیت متعادل باقی می مانند و حرکت متوقف می شود. در این راه کوششهای فراوانی صورت گرفت، اما هیچکدام عملی نبود.
| دسته بندی | فیزیک |
| بازدید ها | 3 |
| فرمت فایل | doc |
| حجم فایل | 623 کیلو بایت |
| تعداد صفحات فایل | 27 |
چکیده
در این مقاله فرمول بندی کلی اجزاء محدود با استفاده از تئوری لایه ای برای تحلیل ورقهای مرکب با لایه های پیزوالکتریک بکار گرفته شده است. این تحقیق تغییر مکانهای کوچک، رفتار الاستیک خطی، توابع مختلف درون یاب در جهتهای مختلف صفحه و همچنین تغییرات ضخامت را نشان می دهد. در ضمن این روش مقایسه ای را بین تئوری های لایه ای با ضخامتهای مختلف انجام می دهد.
کلمات کلیدی: تئوری لایه ای، مواد پیزوالکتریک، روش اجزاء محدود، ورقهای مرکب
1- مقدمه
اخیراً استفاده از مواد پیزوالکتریک در ساختارهای هوشمند رشد قابل ملاحظه ای داشته است. مواد پیزوالکتریک دارای خاصیت جفت شدگی5 و هماهنگی قوی بین پاسخ مکانیکی و الکتریکی هستند[1].
وقتی که این مواد تحت تنش کششی، فشاری یا نیروی برشی قرار می گیرند، یک ولتاژ الکتریکی در آنها بوجود می آید. که به عنوان تاثیر مستقیم پیزوالکتریک شناخته می شود.
لذا دارای کاربردهای مختلفی در علوم مهندسی از جمله هوا فضا، شیمی، عمران، الکترونیک و مکانیک و... می باشند[2]. همچنین می توان به عنوان سنسور برای اندازه گیری مقادیر فیزیکی از جمله کرنش در ساختارهای متفاوت و پیش بینی خرابی از آنها استفاده کرد. از مواد پیزوالکتریک می توان به عنوان محرک در کنترل ارتعاشات نیز استفاده نمود[3].
اولین بار یونانیان باستان متوجه خاصیت الکتریکی بویژه شارژ استاتیکی در مواد خاص در هنگام سایش آنها به یکدیگر شدند[4]. استفاده های نخستین از مواد پیزوالکتریک به سال 1880 بر می گردد زمانی که برادران کوری اثر مستقیم مواد پیزوالکتریک را کشف کردند[5].
[1]
ویت در سال 1894 متوجه رابطه بین ساختار مواد و تاثیرات پیزوالکتریک شد. بدین صورت که یک ولتاژ در مواد پیزوالکتریک باعث تغییرات هندسی در آنها می شود .که امروزه به نام تاثیرات معکوس پیزوالکتریک شناخته می شود[6].
مواد بسیاری از جمله نمک راشل6 ،کوارتز7،باریم8 و کهربای اصل9 خواص پیزوالکتریک را از خود نشان می دهند. در اوایل سال 1918 لنگ اوین از مواد پیزوالکتریک برای ساخت سونار10در جنگ جهانی دوم استفاده کرد. همچنین در دهه 1960 بشر متوجه خاصیت پیزوالکتریک در استخوان و ماهیچه انسان شدند.
باید توجه داشت که خواص مکانیکی ورقهای مرکب در جهت عرضی ناپیوسته است و این گونه سازه ها در برابر تنش های برشی و عمودی عرضی بسیار تغییر شکل پذیر می باشند. به علت وجود خواص مکانیکی مختلف در جهات و لایه های متفاوت، صفحه در حالت کلی ناهمگن بوده و به همین دلیل تا به حال تئوری های متعددی برای مدل- سازی خصوصیات موادی و رفتار سینماتیکی آنها ارائه شده است. این تئوری ها به طور کلی شامل تئوری های مبنی بر توزیع میدان تنش11 و توزیع میدان تغییر مکان12 می باشند. تئوری های مبنی بر توزیع میدان تنش کاربرد چندانی در تحلیل صفحات ندارند، زیرا بسط مدل اجزاء محدود آنها دشوار می باشد و اغلب از تئوری های مبنی بر توزیع میدان تغییر مکان در جهت ضخامت، استفاده می شود. تئوری های مبنی بر توزیع میدان تغییر مکان نیز به دو دسته تئوری های تک لایه معادل و تئوری های لایه ای تقسیم می شوند.
تحلیل صفحات کامپوزیتی بر اساس یکی از روش های زیر است:
1-1) تئوری های تک لایه معادل1 (دو بعدی):
1—1-1) تئوری کلاسیک صفحات چند لایه
1-2-2) تئوری های تغییر شکل برشی صفحات چند لایه
1-2) تئوری سه بعدی الاستیسیته:
1-2-1) فرمول بندی سنتی سه بعدی الاستیسیته
1-2-2) تئوری های لایه ای
1-3) روش های دو بعدی و سه بعدی مدل چندگانه (روش اجزاء محدود)
تئوری های تک لایه معادل از تئوری سه بعدی الاستیسیته با ایجاد فرضیات مناسب درباره سینماتیک تغییر شکل یا حالت تنش در راستای ضخامت چند لایه کامپوزیتی به دست آمده اند. به این ترتیب می توان تغییر شکل صفحه کامپوزیتی را در قالب یک تک لایه معادل توصیف نمود و بنابراین مسئله سه بعدی به دو بعدی کاهش پیدا می کند. برای صفحات چند لایه مرکب این کار مانند آن است که چند لایه ناهمگن با یک تک لایه، که از نظر استاتیکی با چند لایه مذکور معادل است، جایگزین گردد. به این ترتیب میدان تغییر مکان یا میدان تنش به صورت ترکیبی خطی از توابع نامعین و مختصه ضخامت در نظر گرفته می شود. تئوری کلاسیک صفحات چند لایه که ساده ترین تئوری تک لایه معادل می باشد، از بسط تئوری کیرشهف2 برای صفحات کامپوزیتی به وجود آمده است. طبق این تئوری، خطوط مستقیم که ابتدا عمود بر صفحه میانی بوده اند، بعد از تغییر شکل نیز مستقیم و عمود باقی خواهند ماند. همچنین از تغییر ضخامت صفحه صرفنظر می شود. تئوری کلاسیک کاربرد وسیعی در تحلیل خمش استاتیکی، ارتعاشات و پایداری صفحات نازک دارد، ولی از آنجا که از تنش های ناشی از تغییر فرم های برشی صرفنظر می کند، از این تئوری نمی توان در مورد صفحات ضخیم که تغییر شکل های برشی در آن حائز اهمیت می باشد، استفاده نمود. بنابراین کاربرد روش کلاسیک محدود به صفحات نازک می باشد. ریزنر و میندلین به منظور بیان تاثیر تنش های برشی عرضی بر رفتار صفحات، تئوری هایی ارائه نمودند که اکنون به نام تئوری صفحه ریزنر- میندلین3 و یا تئوری تغییرشکل برشی مرتبه اول4 مشهور است. تئوری فوق پرکاربرد ترین تئوری در رابطه با تحلیل صفحات می باشد. بر طبق این تئوری تنش های برشی عرضی در جهت ضخامت ثابت فرض می شوند. بنابراین خطوط مستقیم که ابتدا عمود بر صفحه میانی بوده اند، بعد از تغییر شکل مستقیم باقی خواهند ماند اما لزوما" عمود بر صفحه میانی نیستند.